

Project # 21-45903

CALCULATION COVER SHEET

Calculations Prepared For:

STRUXURE OUTDOOR OF WASHINGTON 9116 E SPRAGUE AVE #547 SPOKANE, WA 509-928-0880

Project:

BAKER, BRIAN 4107 83RD AVE SE MERCER ISLAND, WA

Subject:

CANOPY CALCULATIONS

REFERENCE SEALED DRAWING BY BELOW-SIGNED ENGINEER FOR ALL NOTES AND DETAILS INCORPORATED HEREIN

Engineer's Seal Valid For Pages 1 Through 58

WA

10/14/21

Andrew McCann PE PE 21029672 Cert Auth 4018

Project # 21-45903

StruXure Outdoor of Washington Baker, Brian

Wind Loading Criteria (ASCE 7-16)

Basic Wind Speed 110 MPH
Wind Velocity (Vasd) 86 MPH

Risk Category II

Importance Factor 1.00 Exposure Category C

ASCE

7-16 ASD Residential

Snow Loading Criteria (ASCE 7-16)

Ground Snow Load 25 PSF
Flat Roof Snow Load 30.00 PSF
Snow Exposure Factor 1.00
Snow Thermal Factor 1.20

Snow Importance Factor 1.00

Live Loading Criteria (ASCE 7-16)

Roof Live Load 20 PSF

Dead Loading Criteria (ASCE 7-16)

Dead Load 3 PSF

StruXure

Υ

Host Attached?

Host Supported?

Seismic Load Criteria (ASCE 7-16)

Site Class D
Occupancy Category II

Mapped Spectral Response Accelerations:

S_S 1.419 S₁ 0.493

Spectral Response Coefficients:

 S_{DS} 1.135 S_{D1} 0.526 P 1.0 SDC D TL 6

Load Combinations (ASCE 7-16)

Gravity D + (Lr or S or R) Uplift 0.6D + 0.6W

ONE SIDE

Project # 21-45903 - Baker, Brian

StruXure Outdoor of Washington Baker, Brian

DESIGN CRITERIA:

Enter custom loads:

Vult = 110 mph

Exposure: С

Ground Snow Load: 25.00 psf

Live Load: 20.00 psf

Dead Load: 3.0 psf

Wind Porosity: 50%

Roof Type: Louvered

These are the loads that this calculator will utilize:

Vult = 110 mph

Exposure: С

Ground Snow Load: 25.00 psf Design Live Load: 20.00 psf 3.00 psf Design Dead Load:

> Wind Porosity: 50%

For seismic design, see column calculations

Deflection criteria: L / 80

Type of project: Residential

Critical positive grav comb. (+): 33.00 psf Critical negative uplift comb. (-): - 1.98 psf Critical lateral pressure (+): 23.15 psf

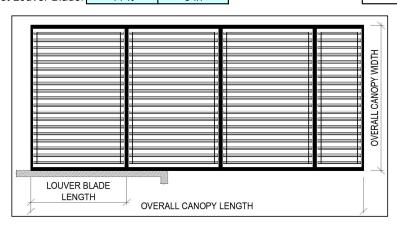
SYSTEM CONFIGURATION:

Louvers:

Overall Canopy Length: 24.0 ft Overall Canopy Width: 22.0 ft Roof Slope:

0.0°

LOUVER BLADES OPEN CHECK 6063-T5

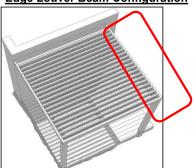

0.34528 Sx= in^3

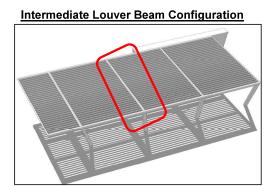
Sy= 0.94568 in^3 $Fcy/\Omega =$ 22 ksi

> Mmax 11230.3125 **Ib-in** Stress 11.8753833 **ksi**

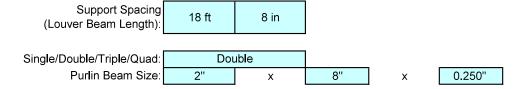
Length of Longest Louver Blade: 11 ft 0 in

Stress Check: 54% Louver Length: 11.0 ft

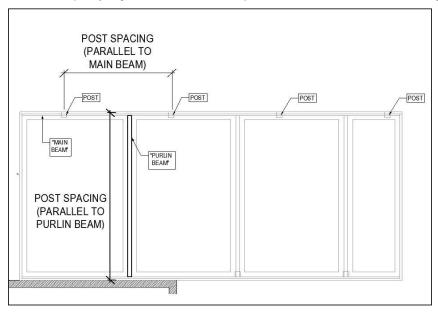




Purlin/Louver Support Beam


Check intermediate or edge? Intermediate (Intermediate uses full louver blade tributary)

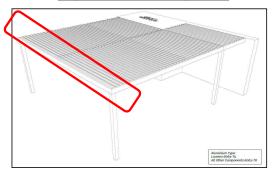
Edge Louver Beam Configuration

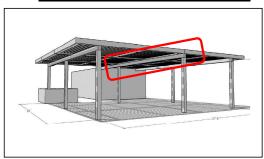


Purlin/Louver Support Beam - Intermediate Condition Analysis

(Analyzing Double 2" x 8" x 0.25" purlin beam, 18.6666666666667ft long)

Note: Intermediate condition shown


Purlin Beam Span:	18.7 ft
Purlin Beam Trib:	11.0 ft
Shear at Ends:	4351 l b
Moment Check	99%
Deflection Check	69%

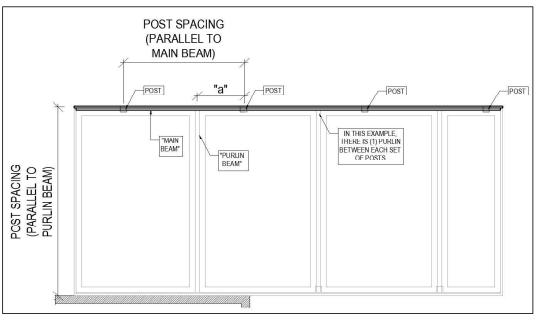

Main Beam

Check intermediate, edge, or none? Edge (Intermediate doubles point loads from louver beams)

Edge Main Beam Configuration

Main Beam - Edge Condition Analysis

Post Spacing 12 ft 0 in (Main Beam Length): Single/Double/Triple/Quad: Single Main Beam Size: 2" 8" 0.125"


(Analyzing Single 2" x 8" x 0.125" main beam, 12ft long)

Quantity of purlins between a set of 0

(0 indicates purlins line up directly over posts)

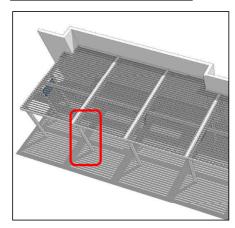
Assumed offset distance "a" of purlin, measured from post (see diagram):

0.0 ft

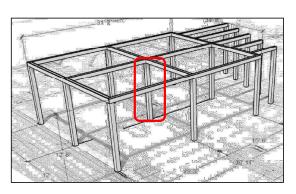
Note: Edge condition shown

Purlin beams line up directly on posts. No vertical load acting on main beam. Self-weight negligible.

Main Beam Span:	12.0 ft
Load from Purlin:	0 l b
Shear at Ends:	0 l b
Moment Check	0%
Deflection Check	0%



Support Posts


Check intermediate, edge, or none?

Edge

Edge Support Post Configuration

Intermediate Support Post Configuration

Mounting Height Above Grade:

0.0 ft Height of Posts: 20.0 ft Attached to host?

(Enter 0 for installations at ground level)

Roof Eave Height=

Total Mean Roof Height:

20.0 ft

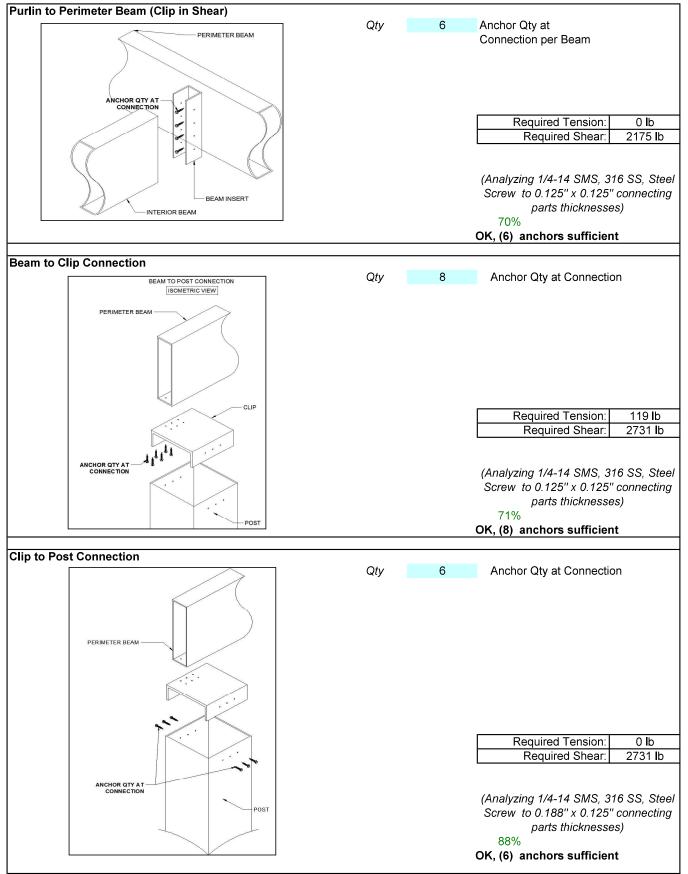
25.0 ft SCREEN

Support Posts - Edge Condition Analysis

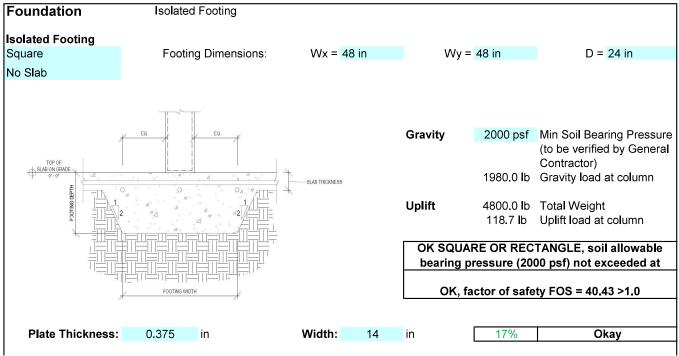
Post Size:

8"

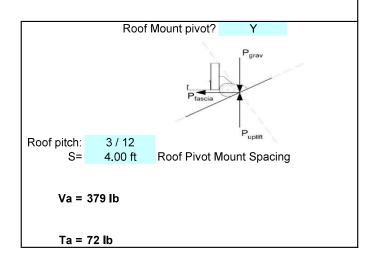
0.188"


X - AXIS Post Trib = 6.00 Y - AXIS Post Trib = 10.00

FH1 = 8.00 Host Attached


in, (side fascia height at HT1, normal to lateral windload)

Max Moment/Axial/Shear 52% Moment/Axial Check: 51% Shear Check 11% 119 **l**b Required Tension: Required Compression: 1980 **l**b Required Shear: 2731 **l**b Required Moment 6.37 kip-ft



Ledger Connection
Ledger Connection? N

Work	k Prepared For						
	Project	21-45903 - Baker, Brian					
		DESIGN CRI	TERIA:				
H =	20.00	ft, Mean Roof Height		ASCE:	7-16		
Θ=	0.0°	Roof Slope F= 0.0000		Exposure:			
Vult =	110	mph, Wind Velocity (3-Second Gust)	Buildi	ng Category:			
Kd =	0.85	Directionality Factor					
G =	0.85	Gust Effect Factor		Snow:			
Kz =	0.90	Velocity Pressure Coefficient		I Snow Load:	•		
Kzt =	1.3	Topographic Factor	-	Snow Load:	•		
				n Live Load:			
	Wind Flow:	Clear		n Dead Load: Vind Porosity			
L =	24.00	ft, Overall Canopy Length	V	Method			
W =	22.00	ft, Overall Canopy Width	Live Load	Lr			
a =	3.00 ft	, , , , , , , , , , , , , , , , , , ,	Reduction Per	Lo	•		
			IBC	R1	: 0.672		
			1067.13.2.1	R2	: 1		
		LOADS ON COMPONEN	ITS & CLADDING:				
		(Roof Decking and Dec					
L1 =	11,00	ft, Effective Deck Panel Length					
W1 =	3.67 ft	Effective Deck Panel Width					
A =	40.33 ft^2	Effective Wind Area, L1*W1	A > 4.0*a^2				
							
CNp =	0.6	Positive Pressure Coefficient					
CNn =	-0.5	Negative Pressure Coefficient					
qz =	15.44 psf	Velocity Pressure w/ Porosity					
WLp =	7.87 psf	Positive Wind Load, = qz*G*CNp					
WLn =	-6.30 psf	Negative Wind Load, = qz*G*CNn					
Grav = Uplift =	33.00 psf -1.98 psf	D + (Lr or S or R) 0.6D + 0.6W	Critical positive DP Critical negative DP				
		LOADS ON MAIN WIND FORC		TEM:			
ind Direction, y	= 0°		Wind Direction, y =	180°			
CNWa =	1.2	Cnw value, load case A	CNWa =	1.2	Cnw value, load case A		
CNWb =	-1.1	Cnw value, load case B	CNWb =	-1.1	Cnw value, load case B		
CNLa =	0.3	Cnl value, load case A	CNLa =	0.3	Cnl value, load case A		
CNLb =	-0.1	Cnl value, load case B	CNLb =	-0.1	Cnl value, load case B		
ind Direction, y	= 90°						
CNa =	-0.8	Cn value, load case A	CNb =	8.0	Cn value, load case B		
CNp =	0.6	Critical Positive Pressure Coefficient					
CNp =	-0.5	Critical Negative Pressure Coefficient					
\A#	7 07	Critical Desitive Wind Land					
WLp = WLn =	7.87 psf -6.30 psf	Critical Positive Wind Load, = qz*G*CNp Critical Negative Wind Load, = qz*G*CNn					
VVLII =	-o.au psi	Childar Negative vvilla Load, – qz G CNN					
Grav =	33.00 psf	D + (Lr or S or R)		tical positive D			
Uplift =	-1.98 psf	0.6D + 0.6W	Criti	ical negative D	P		
CCnn1 -	1 5	LOADS ON CANO Combined Net Pressure Coefficient on windw					
GCpn1 = GCpn1 =	1.5 -1	Combined Net Pressure Coefficient on leewar					
100			_				

WL = 23.15 psf Average Wind Load on Fascia, qz*GCpn*.06

StruXure Outdoor of Washington Work Prepared For:

> Proiect: 21-45903 - Baker, Brian

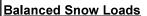
Snow Loads

Pg = 25 psf, Ground snow load

Ce = 1.0 Exposure factor (Table 7-2)

Ct = 1.2 Thermal factor (Table 7-3)

ls = 1.0 Importance factor (Table 7-4)


Evs = 1.00 ° Eave slope

S = 57.29 Roof slope run for a rise of one

W = 15.00 ft, Horizontal distance from eave to ridge

17.25 pcf Snow density Eq. 7-3: 0.13(Pq)+14 < 30 psf $\gamma =$

Cs = 1.00 Slope factor at 1° (Figure 7-2)

25.00 psf Snow load on flat roofs (slope $< 5^{\circ}$): Pf = max[(I)(20),(0.7)(Ce)(Ct)(I)(Pg)] Pf =

25.00 psf Sloped roof snow loads (slope > 5°): Ps = (Cs)(Pf) Ps =

Drifts on Lower Roofs (Aerodynamic Shade)

lu1= 20.00 ft, Length of upper roof

lu2= 15.00 ft Length of lower roof projection

5.00 ft, Height from top of lower roof to top of eave hc=

Drift snow required, hc/hb>0.2

hb= 1.45 ft Height of balanced snow: Ps/(γ)

hd1= 1.34 ft Height of snow drift (Fig 7-9): 0.43(lu)^(1/3)(Pg+10)^(1/4)-1.5 (Leeward) hd2= 0.81 ft Height of snow drift (Fig 7-9): 0.43(lu)^(1/3)(Pg+10)^(1/4)-1.5 (Windward)

ASCE 7-10/7-16 - Rain-On-Snow Surcharge (7.10)

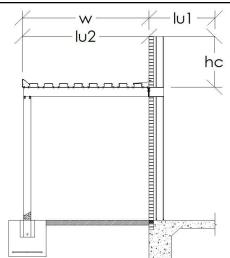
Is Pg 20 PSF or less? NO Include Uniform Dist. Ice Load?

Yes

5 PSF Rain on Snow Surcharge Include surcharge load? Yes

hd= 1.34 ft Governing drift height

w= 5.36 ft Governing drift width


0.00 ft Drift height at edge of lower roof hend=

11.55 psf Surcharge load Uniform Distribution Over Drift Width pd=

4.12 psf Surcharge Load Distributed over

Tributary Area

30.00 psf Unreducible Roof Snow Load SL=

Yes

Unreducible Snow Load

Project: 21-45903 - Baker, Brian

Ice Load Due to Freezing Rain (per ASCE 7-16 - Chapter 10)

Acounting for Accumulating Ice on Louver Blades

Member 1	Properties	3

t _i =	1.00 Nominal Ice Thickness (in.)	Louver (6	6" O.C.)	Louver Be	am
$K_{zt} =$	1.3 Topographic Factor	Depth (d)	6.000 in.	8.000 in.	
Z =	20.00 ft System Height	Width (bf)	1.866 in.	4.000 in.	
$I_i =$	1.00 Importance Factor	Thickness	.065 in.	.250 in.	
$I_d =$	56.00 Ice Density (56 pcf default)	Length	11.00 ft	18.67 ft	
	II Occupancy Category				

Per Table 10-1

 t_d = 1.04 in, Design Ice Thickness $t_d = t_i * I_i * f_z * (K_{zt})^{0.35}$ W_i = 4.87 psf Weight of Ice (for td) W_i = $(td/12)* I_d$ F_z = 0.9512 $F_z = (Z/33)^{0.1}$

Ice Loading Ch 10.4

Louver Ice Loading

 D_c = 6.32 in Circumscribing Diameter of Louver $D_c = \sqrt{d^2 + bf^2}$ A_i = 24.11 in^2 Area of Ice = $\pi t_d^*(D_c + t_d)$

 $W_{i(Louver)}$ = 9.38 plf Uniform Distributed Ice Load (Single Louver Blade)

 $W_i = (A_i/144)*I_d$

Louver Beam Ice Loading from Louver Blades

 $W_{i(Louver)}$ = 9.38 plf Distributed Ice Load on Louver Blade L= 11.00 ft Length of Longest Louver Blade $W_{i(Beam)}$ = 51.6 plf Calculated Ice Load on Louver Beam

W_{i(Beam)}= W_{i(Louver)}*Louver Length*(1.866"/6")

(6" O.C. Louvers In Open Position)

Wi_(Louver)= 9.38 plf Uniform Linear Ice Load (Louver Blade) W_{i(Beam)}= 103.13 plf Uniform Linear Ice Load (Louver Beam)

(W_{i(Beam)} doubled for intermediate Louver Beams)

Work Prepar	red	For	Str	uXure	· C	Dutd	oor	of	Washington
	_				_	_		_	

Project: 21-45903 - Baker, Brian

Seismic Loads Criteria

S_s = 1.419 Max considered response acceleration for a period of 0.2 s

S₁ = 0.493 Max response acceleration at period of 1 s

Height of Structure = 20.00 ft Attached to host structure? Y

Site Class D

 $F_a = 1.2$ short period amplification factor

 F_{v} = 1.6 long period amplification factor

 S_{MS} = 1.703 modified spectral response acceleration at a period of 0.2 s $F_a^*S_s$

 S_{M1} = 0.789 modified spectral response acceleration at a period of 1.0 s $F_v^*S_1$

Spectral Response Acceleration Parameters

 S_{DS} = 1.135 Design spectral response acceleration at a period of 0.2 s (2/3)* S_{ms} S_{D1} = 0.526 design spectral response acceleration at a period of 1.0 s (2/3)* S_{M1}

Structural Design Requirements

 $T_a = 0.189$ approximate fundamental period (s) $C_t^*h_n^*$ $T_1 = 6.0$ Long Transition Period (s)

E_V= 0.477 Vertical Seismic Loads (PSF)

Rp = 2.50 ap= 2.500

ip= 1.000

Wp= 180.00 lbs Tributary Weight

Fp= 81.73 lbs Seismic Design Force 0.4ap*SDS*Wp/(Rp/lp)*(1+2(z/h))

FpMAX= 326.94 lbs

FpMIN= 61.30 lbs Ω = 2.00

P= 1 SERVICE = 0.7 1144.28 lb-ft Effective Seismic Moment (H*Fp)

SDF OK? OK

Project: 21-45903 - Baker, Brian

Detail/Member: Purlin Beam

ALUMINUM DESIGN MANUAL (2015 EDITION) Specifications for Aluminum Structures (Buildings) Allowable Stress Design

<mark>Design Check of 2"x8"x0.25"/0</mark> . Per 2015 Aluminum Design Mant		Aluminum Tube				
				Critically		
Alloy:	6063	Temper:	Т6	We l ded:	N	
MEMBER PROPERTIES						
↓ h ↓				Flange width ge thickness	b =	2.000" 0.250"
Ţ Ţ Ţ			Flanç	Web height	tb = h =	8.000"
tb			We	eb thickness	th =	0.250"
	N	Moment of inertia abo			/x =	32.60 in^4
		Moment of inertia a			ly =	3.22 in^4
			•	ut the x-axis	Sx =	8.15 in^3
	Radius of gy	ration about centroi	da l axis para	llel to flange	rx =	2.62 in
x th → ←	Radius of	gyration about centr	oidal axis pa	rallel to web	ry =	0.82 in
			Tors	ion constant	J =	9.68 in^4
		Cross s	ectiona l area	a of member	A =	4.75 in^2
				ion modu l us	<i>Z</i> =	10.91 in^3
			Warp	ing constant	Cw =	0.00 in^6
MEMBER SPANS						
VILINIBER OF ARO	Uns	upported member le	ngth (betwee	en supports)	L =	18.67 ft
Unbrad		pending (between bra			Lb =	0.1 ft
			Effective I	length factor	k =	1.0
MATERIAL PROPERTIES						
			Tensile ultim	ate strength	Ftu =	30 ksi
			Tensi l e y	ie l d strength	Fty =	25 ksi
		Co	mpressive y	ie l d strength	Fcy =	25 ksi
			Shear ultim	ate strength	Fsu =	18 ksi
				ie l d strength	Fsy =	15 ksi
		Compress	sive modu l us	s of elasticity	E =	10,100 ksi
BUCKLING CONSTANTS						
	Compre	ession in columns &	beam f <mark>l</mark> ange	s (Intercept)	Bc =	27.64 ksi
	Com	pression in columns	& beam flar	nges (S l ope)	Dc =	0.14 ksi
	Compressi	ion in columns & bea	• •	,	Cc =	78.38 ksi
		Compression			<i>Bp</i> =	31 . 39 ksi
				ates (Slope)	Dp =	0.17 ksi
_		Compression in		,	<i>Cp</i> =	73.55 ksi
		ng stress in solid rec			<i>Bbr</i> =	46.12 ksi
Co	ompressive bei	nding stress in solid			Dbr =	0.38 ksi
		Shear stress	•	٠ ,	<i>Bs</i> =	18.98 ksi
			•	ates (Slope)	Ds =	0.08 ksi
Liltimate atronath or	officient of flat	Shear stress in	. ,		Cs =	94.57 ksi
Ultimate strength coefficien		plates in compressi			k1c =	0.35
•	•	of flat plates in bendi			k2c = k1b =	2.27 0.50
	•	ates in bending (stre	• ,	,	k2b =	2.04
Ojumate su	ongui oi nat pi	ates in bending (sire		n coefficient	kt =	1.0
D.2 Axial Tension						
<u>5.2 Axiai Tension</u> Fensile Yielding - Unwelded Mem	nbers			[Fty]	Fty_n =	25.00 ksi
	5.0			ני יו	Ω =	1.65
					$Fty_{n}/\Omega =$	15.15 ksi
Fensile Rupture - Unwelded Mem	nbers			[Ftu/kt]	⊢tu n =	30.00 ksi
Tensile Rupture - Unwelded Mem	nbers			[Ftu/kt]	<i>Ftu_n =</i> Ω =	30.00 ksi 1.95

AXIAL COMPRESSION MEMBERS E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit Upper slenderness limit Slenderness	λ1 = λ2 = λ(max) =	18.23 78.38 85.51	≥ λ2
	[0.85π²Ε/λ²]	Fc_n = Ω = Fc_n/Ω =	11.59 ksi 1.65 7.02 ksi	
		10_11/22 =	7.02 K31	
E.3 Local Buckling For column elements in uniform compression subject to compressive strength is addressed in Section B.5.4 calc B.5.4.2 - Flat elements supported on both edges (Flang B.5.4.2 - Flat elements supported on both edges (Web)	culated below.			
E.4 Buckling Interaction				
Per Table B.5.1	[π²*E/ (1.6*b/tb)²] [Fc_n]	Fe(flange) = Fc_n =	1081.63 ksi 11.59 ksi	
Fe(fla	ange) > Fc_n (E.2 Member Buckling)	Ω = Fc_n/Ω =	1.65 7.02 ksi	
	$[\pi^{2*}E/(1.6*h/th)^{2}]$	$Fe(\overline{web}) =$	43.27 ksi	
Fe([Fc_n] web) > Fc_n (E.2 Member Buckling)	Fc_n = Ω =	11.59 ksi 1.65	
		Fc_n/Ω =	7.02 ksi	
FLEXURAL MEMBERS				
F.2 Yielding and Rupture Nominal flexural strength for yielding and rupture	Limit State of Yielding			
Tronma nozara oxongxi ioi yiotang ana raptaro	[Z*Fcy]	Mnp =	272.66 k-in	
	[Mnp/Z]	Fb_n = Ω =	25.00 ksi 1.65	
		$Fb_n/\Omega =$	15.15 ksi	
	Limit State of Rupture [Z*Ftu/kt]	Mnu =	327.19 k-in	
	[Mnu/Z]	Fb_n =	30.00 ksi	
		Ω = Fb_n/ Ω =	1.95 15.38 ksi	
F.4 Lateral-Torsional Buckling				
Square or rectangular tubes subject to lateral-torsional to	ouckling			
Slenderness for shape	es symmetric about the bending axis Slenderness for closed shapes	λ F.4.2.1 = λ F.4.2.3 =	9.46 3.04	
	Slenderness for any shape	λ F.4.2.5 =	9.46	
Nominal flexural strength - lateral-torsional buckling	Maximum slenderness	λ(max) =	9.46	< Cc
Trominal liekural su erigur - lateral-tursional buckling	[Mnp(1-(λ/Cc))+(π²*Ε*λ*Sx/Cc^3)]	Mnmb =	255.71 k-in	
	[Mnmb/Sx]	Fb_n = Ω =	31.38 ksi 1.65	
		Fb_n/Ω =	19.02 ksi	
UNIFORM COMPRESSION ELEMENTS				
B.5.4.2 Flat Elements Supported on Both Edges - W. Uniform compression strength, flat elements supported				
	Lower slenderness limit Upper slenderness limit	λ1 = λ2 =	22.8	
	Flange Slenderness	λ2 = b/tb =	39.2 6.0	≤ λ 1
	Web Slenderness	h/th =	30.0	λ1 - λ2
	[Fcy]	<i>Fc_n1 =</i> Ω =	25.00 ksi 1.65	
	D 4 AID 11 ""	$Fc_n1/\Omega =$	15.15 ksi	
	[Bp-1.6*Dp*h/th]	Fc_n2 = Ω =	22.99 ksi 1.65	
		Fc_n2/Ω =	13.93 ksi	

FLEXURAL COMPRESSION ELEMENTS			
B.5.5.1 Flat Elements Supported on Both Edges - Web Flexural compression strength, flat elements supported on both edges			
Fiexural compression strength, пат еlements supported on both edges Lower slenderness limit	λ1 =	34.73	
Upper slenderness limit	λ7 = λ2 =	92.95	
Slenderness	h/th =	30.00	≤ λ 1
[1.5*Fcy]	Fb <u>_</u> n =	37.50 ksi	
	Ω =	1.65	
	$Fb_n/\Omega =$	22.73 ksi	
SHEAR			
G.2 Shear Supported on Both Edges - Web		30.70	
Members with flat elements supported on both edges Lower slenderness limit	λ1 =	38.73	
Upper slenderness limit	λ2 =	75.65	- 14
Slenderness	h/th =	30.00	≤ λ1
[Fsy]	Fv_n =	15.00 ksi	
	Ω = Fv_n/ Ω =	1.65 9.09 ksi	
	LA_11/27 -	9.09 ksi	
ALLOWABLE STRESSES			
ALLOWABLE STRESSES			
Allowable bending stress	Fb=	15 . 15 ksi	
Allowable axial stress, compression	Fb = Fac =	15.15 KSI 7.02 ksi	
Allowable axial stress, compression Allowable shear stress; webs	Fac = Fv =	7.02 KSI 9.09 ksi	
, morranio 01.55. 55.555, 11.2.2	1 9	3.00 No.	
Elastic buckling stress	Fe =	6.99 ksi	
Weighted average allowable compressive stress (per Section E.3.1)	Fao =	14.14 ksi	
, , , , , , , , , , , , , , , , , , ,	-		
MEMBER LOADING			
Bending Moments	_		
Bending moment developed in member	Mz =	10.15 kip-ft	
Bending stress developed in member	fb =	14.95 ksi	
Allowable bending stress of member	Fb =	15.15 ksi	< 1.0
Axial Loads Axial load developed in member	Ev =	0 lb	
Axial load developed in member	Fx = fa =	0 l b	
Axial stress developed in member Allowable compressive axial stress of member	ta = Fac =	0.00 ksi 7.02 ksi	< 1.0
Allowabic compressive axial success of member	1 ac -	1.UZ NOI	< 1.∪
Shear Loads			
Shear load developed in member	Vz =	2,175 l b	
Shear stress developed in member	fv =	0.58 ksi	
Allowable shear stress of member webs	Fv =	9.09 ksi	< 1.0
			
Interaction Equations			
√ [(fb/Fl	$(b)^2 + (fv/Fv)^2 =$	0.99	< 1.0
Eq H.1-1	fa/Fa + fb/Fb =	0.00	< 1.0
Eq H.3-2 fa/Fa + (fb/F	=b)^2 + (fv/Fv)^2 =	0.00	< 1.0
CONFIGURATION AND MOMENT TABULATION TOOLS	5 .	0:	
Support Type	Beam =	Simple	
# of beam= 2 Beam Length	L =	18.67 ft	
Tributary Width	W =	11.00 ft	
Load on Tributary (LL, WL, DL, etc) Additional Beam Load (Weight or Service Loads)	RL =	33.00 psf 0.00 lb/ft	
Additional Beam Load (Weight of Service Loads) Total Loading on Beam	DL =	0.00 lb/π 466.13 lb/ft	
Shear Loading at End of Beam	w = Vy =	400.13 lb/lt 4351 l bs	
CALCULATED MOMENT	vy – Mmax =	20.3 kip-ft	
Deflection Check	Milliav -	20,3 κιρ−ιι	
Deflection Check	Support =	Simple	
	Deflection Limit =	L / 80	
	W =	466.13 lb/ft	
ALLOWABLE DEFLECTION	∆Allow =	2,80 in	
MAXIMUM DEFLECTION	ΔMax =	1.93 in	69%
	mple Max Deflection		00,0
	, Allowable Deflect		

Project: 21-45903 - Baker, Brian

Detail/Member: Main Beam

ALUMINUM DESIGN MANUAL (2015 EDITION) Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of 2"x8"x0.125"/0.125" 6063-T6 Aluminum Tube

Design Check of 2"x8"x0.125"/0.		<u>ninum Tube</u>				
Per 2015 Aluminum Design Manua	a <i>l</i>			0 ''' 11		
A.H	0000	T	TO	Critically	N.I.	
Alloy:	6063	Temper:	Т6	We l ded:	N	
MEMBER PROPERTIES						
INICIAIDEIXT ROTERTIES			1	F l ange width	b =	2.000"
↓ —_b — →				ge thickness	tb =	0.125"
•				Web height	h =	8.000"
tb •			W	eb thickness	th =	0.125"
	Momer	nt of inertia ab	out axis para	allel to flange	lx =	17.45 in^4
	Mom	ent of inertia	about axis pa	arallel to web	/y =	1.87 in^4
		Section	modu l us abo	out the x-axis	Sx =	4.36 in^3
x x	Radius of gyration				rx =	2.68 in
	Radius of gyration	on about centi	oida l axis pa	arallel to web	ry =	0.88 in
				sion constant	J =	5.59 in^4
		Cross s		a of member	A =	2.44 in^2
				tion modu l us	Z =	5.72 in^3
			Warp	ing constant	Cw =	0.00 in^6
INFINED ORANG						
MEMBER SPANS						40.0 %
Habasasa	• • •	ed member le	•		L =	12.0 ft
Unbrace	ed length for bendin	g (between br		• .	Lb =	12.0 ft
			Епесиче	length factor	k =	1.0
MATERIAL PROPERTIES						
WATERIAL FROI ERTIES			Tensile ultim	nate strength	Ftu =	30 ksi
				rield strength	Fty =	25 ksi
		Co	•	rield strength	Fcy =	25 ksi
				nate strength	Fsu =	18 ksi
				ield strength	Fsy =	15 ksi
		Compres		s of elasticity	E =	10,100 ksi
				•		,
BUCKLING CONSTANTS						
	Compression	in columns &	beam flange	es (Intercept)	Bc =	27.64 ksi
		on in columns			Dc =	0.14 ksi
	Compression in				Cc =	78.38 ksi
		Compressio	•		<i>Bp</i> =	31.39 ksi
				lates (Slope)	Dp =	0.17 ksi
		ompression in			<i>Cp</i> =	73.55 ksi
	essive bending stre				Bbr =	46.12 ksi
Con	mpressive bending				Dbr =	0.38 ksi
				es (Intercept)	Bs =	18.98 ksi
	ć	Snear st Shear stress ir		lates (Slope)	Ds =	0.08 ksi
Ultimate strength coe			. ,	,	Cs =	94.57 ksi
Ultimate strength coefficient					k1c = k2c =	0.35 2.27
	ate strength of flat p				k1b =	0.50
	ngth of flat plates in		• .	,	k2b =	2.04
Offiniate Street	rigiti of flat plates if	r bending (stre		on coefficient	kt =	1.0
			1011010	555.11616110	At -	1.0
D.2 Axial Tension						
Tensile Yielding - Unwelded Memb	ers			[Fty]	Fty_n =	25.00 ksi
]				L -91	Ω =	1.65
					$Fty_n/\Omega =$	15.15 ksi
Tensile Rupture - Unwelded Memb	ers			[Ftu/kt]	Ftu_n =	30.00 ksi
				,	Ω =	1.95
					$Ftu_n/\Omega t =$	15.38 ksi
•					-	

2 Compression Member Buckling				
xial, gross section subject to buckling	Lower slenderness limit Upper slenderness limit Slenderness	λ1 = λ2 = λ(max) =	18.23 78.38 164.31	≥ λ2
	[0.85π²Ε/λ²]	Fc_n = Ω = Fc_n/Ω =	3.14 ksi 1.65 1.90 ksi	
.3 Local Buckling Tocal Buckling Support of the strength is addressed in Section B.5.4 of the strength is addressed in Section B.5.4 of the strength is supported on both edges (Flat 5.4.2 - Flat elements supported on both edges (Westerlands)	alculated below. nge)			
4 Buckling Interaction	7 34F1/4 041 (II) 21	F (#)	400.071	
er Table B.5.1 Fe	[π²*Ε/ (1.6*b/tb)²] [Fc_n] (flange) > Fc_n (E.2 Member Buckling)	Fe(flange) = Fc_n = Ω =	198.67 ksi 3.14 ksi 1.65	
	[π²*E/ (1.6*h/th)²] [Fc_n]	Fc_n/ Ω = Fe(web) = Fc_n =	1.90 ksi 10.13 ksi 3.14 ksi	
F	Fe(web) > Fc_n (E.2 Member Buckling)	Ω = Fc_n/Ω =	1.65 1.90 ksi	
LEXURAL MEMBERS .2 Yielding and Rupture				
ominal flexural strength for yielding and rupture	Limit State of Yielding			
	[Z*Fcy] [Mnp/Z]	Mnp = Fb_n =	143.07 k-in 25.00 ksi	
	Limit Chata of Dumbura	Ω = Fb_n /Ω =	1.65 15.15 ksi	
	Limit State of Rupture [Z*Ftu/kt]	Mnu =	171 . 68 k-in	
	[Mnu/Z]	Fb_n = Ω =	30.00 ksi 1.95	
		$Fb_n/\Omega =$	15.38 ksi	
4 Lateral-Torsional Buckling				
quare or rectangular tubes subject to lateral-torsion Slenderness for sh	al buckling apes symmetric about the bending axis	λ F.4.2.1 =	32.22	
	Slenderness for closed shapes Slenderness for any shape	λ F.4.2.3 = λ F.4.2.5 =	32.05 32.22	
	Maximum slenderness	λ Γ.4.2.5 = λ(max) =	32.22	< Cc
ominal flexural strength - lateral-torsional buckling	[Mnp(1-(λ/Cc))+(π²*Ε*λ*Sx/Cc^3)]	Mnmb =	113.35 k-in	
	[Mnmb/Sx]	Fb_n =	25.98 ksi	
		Ω = Fb_n/ Ω =	1.65 15.75 ksi	
NIFORM COMPRESSION ELEMENTS				
.5.4.2 Flat Elements Supported on Both Edges - niform compression strength, flat elements supported				
milionii compression strengtii, ilat elements support	Lower slenderness limit	λ1 =	22.8	
	Upper slenderness limit	λ2 =	39.2	
	Flange Slenderness Web Slenderness	b/tb = h/th =	14.0 62.0	≤ λ1 ≥ λ2
	[Fcy]	Fc_n1 =	25.00 ksi	- //2
		Ω = Fc_n1/Ω =	1.65 15.15 ksi	
	[$k2c^*\sqrt{(Bp^*E)/(1.6^*h/th)}$]	Fc_n2 =	12.88 ksi	
		Ω =	1.65	

FLEXURAL COMPRESSION ELEMENTS B.5.5.1 Flat Elements Supported on Both Edges - Web			
Flexural compression strength, flat elements supported on both edges			
Lower slenderness limit	λ1 =	34.73	
Upper slenderness limit	λ2 =	92.95	
Slenderness	h/th =	62.00	λ1 - λ2
[Bbr-m*Dbr*h/th]	Fb_n =	30.74 ksi	
	Ω =	1.65	
NUCAD	$Fb_n/\Omega =$	18.63 ksi	
SHEAR 5.2 Shear Supported on Both Edges - Web			
Aembers with flat elements supported on both edges Lower slenderness limit	λ1 =	38.73	
Upper slenderness limit	λ1 = λ2 =	75.65	
Slenderness minit	h/th =	62.00	λ1 - λ2
[Bs-1.25Ds*h/th]	Fv_n =	12.61 ksi	Λ1 - Λ2
[50 1.2050 1.44]	Ω =	1.65	
	$Fv_n/\Omega =$	7.64 ksi	
ALLOWABLE STRESSES			
Allowable bending stress	Fb =	15.15 ksi	
Allowable axial stress, compression	Fac =	1,90 ksi	
Allowable shear stress; webs	Fv =	7.64 ksi	
Elastic buckling stress	Fe =	1.89 ksi	
Weighted average allowable compressive stress (per Section E.3.1)	Fao =	9.16 ksi	
MEMBER LOADING			
Bending Moments			
Bending moment developed in member	Mz =	0.0 kip-ft	
Bending stress developed in member	fb =	0.00 ksi	
Allowable bending stress of member	Fb =	15.15 ksi	< 1.0
Axial Loads			
Axial load developed in member	Fx =	0 l b	
Axial stress developed in member	fa =	0.00 ksi	
Allowable compressive axial stress of member	Fac =	1.90 ksi	< 1.0
Shear Loads	_		
Shear load developed in member	Vz =	33 l b	
Shear stress developed in member	fv =	0.02 ksi	
Allowable shear stress of member webs	Fv =	7.64 ksi	< 1.0
nteraction Equations			
	^2 + (fv/Fv)^2] =	0.00	< 1.0
Eq H.1-1	fa/Fa + fb/Fb =	0.00	< 1.0
Eq H.3-2 fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 =	0.00	< 1.0
ONFIGURATION AND MOMENT TABULATION TOOLS			
# of beam= Support Type	Beam =	Simple	
# P load= 0 Beam Length	L =	12.00 ft	
a= 0.00 ft Tributary Width	W =	0.17 ft	
	P Load=	0.0 l b	
Load on Tributary (LL, WL, DL, etc)	RL =	33.00 psf	
Additional Beam Load (Weight or Service Loads)	DL =	0.00 lb/ft	
Total Loading on Beam	w =	5.50 lb/ft	
Shear Loading at End of Beam	Vy =	33 lbs	
CALCULATED MOMENT	Mmax =	0.00 kip-ft	
Deflection Check			
	Support =	Simple	
D	eflection Limit =	L / 80	
	w =	5.50 lb/ft	
ALLOWABLE DEFLECTION	∆Allow =	1.80 in	00/
	∆Max =	0.00 in	0%
MAXIMUM DEFLECTION	ole Max Deflection	- 5m/A/204E	

Work Prepared For:
Project:
Detail/Member:

StruXure Outdoor of Washington 21-45903 - Baker, Brian

Column Design

ALUMINUM DESIGN MANUAL (2020 EDITION) Specifications for Aluminum Structures (Buildings) Allowable Stress Design

Design Check of 8"x8"x0.188"/0.188" 6063-T6 Aluminum Tube

Per 2020 Aluminum Design Ma	nual						
				Critically			
A	lloy: 6063	Temper:	Т6	Welded:	N		
MEMBER PROPERTIES							
INIEMBERT ROTERINES				lange width	b =	8.000"	
↓ b →				ge thickness	tb =	0.188"	
•				Web height	h =	8.000"	
tb			W	eb thickness	th =	0.188"	
	М	oment of inertia abou			/x =	59.79 in^4	
		Moment of inertia ab			/y =	59.79 in^4	
				ut the x-axis	Sx =	14.95 in^3	
xx	Radius of gvr	ation about centroida			rx =	3.19 in	
		yration about centroi			ry =	3.19 in	
		•		ion constant	J =	89.63 in^4	
		Cross se	ctional area	a of member	A =	5.87 in^2	
		F	Plastic sect	ion modulus	Z =	17.21 in^3	
				ing constant	Cw =	0.00 in^6	
MEMBER SPANS				J			
	Unsu	pported member len	gth (betwe	en supports)	L =	20.0 ft	
Uni	braced length for bending				Lbx =	20.0 ft	
Unk	braced length for bending	(between bracing aga	ainst side-s	sway Y-Axis)	Lby =	20.0 ft	
			Effective	length factor	kx =	2.0	
					ky =	1.0	
MATERIAL PROPERTIES							
		Te	ensile ultim	ate strength	Ftu =	30 ksi	
				ield strength	Fty =	25 ksi	
				ield strength	Fcy =	25 ksi	
		\$		ate strength	Fsu =	18 ksi	
				ield strength	Fsy =	15 ksi	
		Compressiv	e modulus	of elasticity	E =	10,100 ksi	
BUCKLING CONSTANTS							
	Compres	ssion in columns & be	eam flange	s (Intercept)	Bc =	27.64 ksi	
	Comp	oression in columns 8	k beam flar	nges (Slope)	Dc =	0.14 ksi	
	Compression	on in columns & bear	n flanges (Intersection)	Cc =	78.38 ksi	
		Compression	in flat plate	s (Intercept)	Bp =	31.39 ksi	
		Compressi	on in flat pl	ates (Slope)	Dp =	0.17 ksi	
		Compression in f	lat plates (Intersection)	<i>Cp</i> =	73.55 ksi	
	Compressive bending	g stress in solid recta	angular bar	rs (Intercept)	Bbr =	46.12 ksi	
	Compressive ben	ding stress in solid re	ectangular	bars (Slope)	Dbr =	0.38 ksi	
		Shear stress	•		Bs =	18.98 ksi	
			•	ates (Slope)	Ds =	0.08 ksi	
		Shear stress in f		,	Cs =	94.57 ksi	
	strength coefficient of flat _l				k1c =	0.35	
Ultimate strength	n coefficient of flat plates in			,	k2c =	2.27	
		flat plates in bending		,	k1b =	0.50	
	Ultimate strength of flat pla	ites in bending (stres		,	k2b =	2.04	
			Tensic	n coefficient	kt =	1.0	
D.2 Axial Tension							
Tensile Yielding - Unwelded Me	embers			[Fty]	Fty_n =	25.00 ksi	
				1, 131	Ω =	1.65	
					$Fty_n/\Omega =$	15 15 ksi	
Tensile Rupture - Unwelded Me	embers			[Ftu/kt]	Ftu_n =	30.00 ksi	
·				. ,	Ω =	1.95	
					$Ftu_n/\Omega t =$	15.38 ksi	

AXIAL COMPRESSION MEMBERS				
.2 Compression Member Buckling xial, gross section subject to buckling	Lower slenderness limit Upper slenderness limit	λ1 = λ2 =	18.23 78.38	
	Slenderness [0.85π²Ε/λ²]	λ(max) = Fc_n =	150.46 3.74 ksi	≥ λ2
		Ω = Fc_n/Ω =	1.65 2.27 ksi	
i.3 Local Buckling or column elements in uniform compression subject to I trength is addressed in Section B.5.4 calculated below. 1.5.4.2 - Flat elements supported on both edges (Flange, 1.5.4.2 - Flat elements supported on both edges (Web)	,			
.4 Buckling Interaction				
er Table B.5.1	[π²*E/ (1.6*b/tb)²] [Fc_n]	Fe(flange) = Fc_n =	23.68 ksi 3.74 ksi	
	Fe(flange) > Fc_n (E.2 Member Buckling)	Ω = Fc_n/Ω =	1.65 2.27 ksi	
	[π²*E/ (1.6*h/th)²] [Fc_n]	Fe(web) = Fc_n =	23.68 ksi 3.74 ksi	
	Fe(web) > Fc_n (E.2 Member Buckling)	Ω = Fc_n/Ω =	1.65 2.27 ksi	
FLEXURAL MEMBERS F.2 Yielding and Rupture				
Nominal flexural strength for yielding and rupture	Limit State of Yielding [Z*Fcy]	Mnp =	430.33 k-in	
	[Mnp/Z]	Fb_n = Ω =	25.00 ksi 1.65	
	Limit State of Rupture	$Fb_n/\Omega =$	15.15 ksi	
	[Z*Ftu/kt] [Mnu/Z]	Mnu = Fb_n =	516.39 k-in 30.00 ksi	
		Ω = Fb_n/Ω =	1.95 15.38 ksi	
F.4 Lateral-Torsional Buckling Square or rectangular tubes subject to lateral-torsional bu	uckling			
	or shapes symmetric about the bending axis	$\lambda F.4.2.1 =$	16.13	
	Slenderness for closed shapes Slenderness for any shape	λ F.4.2.3 = λ F.4.2.5 =	16.10 16.13	
Nominal flexural strength - lateral-torsional buckling	Maximum slenderness	$\lambda(max) =$	16.13	< Cc
Tominal nextral strength lateral to social buoking	[Mnp(1-(λ/Cc))+(π²*Ε*λ*Sx/Cc^3)] [Mnmb/Sx]	Mnmb = Fb_n =	391.67 k-in 26.20 ksi	
		Ω = Fb_n/Ω =	1.65 15.88 ksi	
UNIFORM COMPRESSION ELEMENTS B.5.4.2 Flat Elements Supported on Both Edges - Wel	b & Flange			
Uniform compression strength, flat elements supported o	n both edges			
	Lower slenderness limit Upper slenderness limit Flange Slenderness	λ1 = λ2 = b/tb =	22.8 39.2 40.55	≥ λ2
	Web Slenderness [$k2c^*\sqrt{(Bp^*E)/(1.6^*b/tb)}$]	h/th = Fc_n1 =	40.55 19.70 ksi	≥ \(\lambda\)2
	,	Ω = Fc_n1/Ω =	1.65 11.94 ksi	
	[k2c*√(Bp*E)/(1.6*h/th)]	Fc_n2 = Ω =	19.70 ksi 1.65	

	OMPRESSION EL						
		<u>ed on Both Edges</u> lat elements suppo					
iexurai comp	ression strength, t	iat elements suppo		enderness limit	λ1 =	34.73	
				enderness limit		92.95	
			Opper si	Slenderness		92.95 40.55	λ1 - λ2
			rı.	Bbr-m*Dbr*h/th]		36.06 ksi	/\ 1 - /\Z
			[1	מוזייו וטטו וויינון	Ω =	1.65	
					Fb_n/Ω =	21.85 ksi	
HEAR					FD_11/12 -	21.00 KSI	
	pported on Both	Edges - Web					
		ported on both edge	l ower s	enderness limit	λ1 =	38.73	
iomboro with	nat oromonto cap	portod on both odge		enderness limit		75.65	
			3 P P 3 . 3 .	Slenderness		40.55	λ1 - λ2
			T.F.	Bs-1.25Ds*h/th]		14.81 ksi	7(1 7(2
			-		Ω =	1.65	
					Fv_n/Ω =	8.98 ksi	
	07770050				· · · · · · · · · · · · · · · · · · ·		
LLOWABLE	STRESSES	Γ					
			Allowable	bending stress	Fb=	14.27 ksi	
			Allowable axial stres	s, compression	Fac =	2.27 ksi	
			Allowable she	ar stress; webs	Fv =	8.98 ksi	
			Allowable axial	stress, Tension	Fat =	15.15 ksi	
		l	Elastic	buckling stress	Fe =	2.26 ksi	
		Weighted average	allowable compressive stress (pe			11.94 ksi	
			. "	,			
MEMBER LO	ADING						
Bending Mon	<u>nents</u>						
			Bending moment develo	ped in member	Mz =	6.37 kip-ft	
			Bending stress develo	•		5.11 ksi	
			Allowable bending st	ress of member	Fb =	14.27 ksi	< 1.0
	1 1						
Compression	Loads		Camananaian land dawala			4 000 !!-	
			Compression load develo	•		1,980 lb	
			Compression stress develo	•		0.34 ksi	- 10
	la.		Allowable compressive axial st	ress or member	Fac =	2.27 ksi	< 1.0
ension Load	<u>15</u>		Tension load develo	and in mambar	T =	440 lb	
			Tension stress develo	•		119 lb 0.01 ksi	
			Allowable Tension axial st	•		15.15 ksi	< 1.0
			Allowable Telision axial St	iess of Highlinel	rai –	13.13 KSI	~ 1.0
Shear Loads							
			Shear load develo	ped in member	Vz =	2,731 lb	
			Shear stress develo	•		0.95 ksi	
				20		8.98 ksi	< 1.0
nteraction Ed	<u>quations</u>						
				√ [(f	b/Fb)^2 + (fv/Fv)^2] =	0.37	< 1.0
					fa/Fa + fb/Fb =	0.51	< 1.0
				fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 =	0.52	< 1.0
ONFIGURAT	TION AND MOMF	NT TABULATION T	OOLS				
lember Load			-				
Mx =	59.27 kip-in	Applied Momen	t Per Member	33 PSF	Total Gravity Load		
My =	76.40 kip-in	Applied momen		6.0 FT	Post Trib Area in X-Axis		
	1.35 kip-in	Applied Torsion		10.0 FT	Post Trib Area in Y-Axis		
Tn =	401 lbs		Load Per Member	2 PSF	Uplift		
Tn = Vx =	401105				Lateral Load		
Vx =	2,701 lbs	Applied Shear I	Load Per Member	23 PSF	Lateral Luau		
	2,701 lbs	Applied Shear I Applied Resulta		23 PSF	Lateral Load		
Vx = Vy =			ant Shear Load Per Member	23 PSF	Lateral Load		

Project: 21-45903 - Baker, Brian

Member/Detail: BEAM TO PURLIN

Steel Spaced Thread Tapping Screw to Aluminum Connections

†2020 Aluminum Design Manual, *AMMA TIR-A9-2014

Anchor:	1/4-14 SMS, 31	6 SS, Steel Screw
Size:	1/4-14 SMS	Nominal Anchor Size Designation
Alloy:	316 SS	Screw Material
Ftu=	100 ksi	Anchor Ultimate Tensile Strength
Fy =	65 ksi	Anchor Yield Strength
D =	0.250"	Nominal Screw Diameter (*Table 20.1,20.2)
Dmin =	0.185"	Basic Minor Diameter (*Table 20.1,20.2)
As =	0.027 in ²	Tensile Stress Area (*Table 20.1,20.2)
Ar =	0.027 in ²	Thread Root Area (*Table 20.1,20.2)
n =	14	Thread Per Inch
Dw=	0.625"	Washer Diameter Consider Washer?
Dws =	0.500"	Anchor Head Diameter
Dh =	0.250"	Nominal Hole Diameter
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?
Countersunk?	No	Yes or No?
CS Depth =		Countersink depth

Aluminum Edge Distance

Member in Contact with Screw Head:

de =

0.500"

Alloy 1:	6063-T6	
t1 =	0.125"	Thickness of Member 1
Ftu1 =	30 ksi	Tensile Ultimate Strength of Member 1
Fty1 =	25 ksi	Tensile Yield Strength of Member 1

Member not in Contact with Screw Head:

Alloy 2:	6063-T6	
t2 =	0.125"	Thickness of Member 2
Le =	0.125"	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2
Fty2 =	25 ksi	Tensile Yield Strength of Member 2
t3 =	0.125"	Screw Boss Wall Thickness
		Minimum Depth of Full Thread Engagement Into Screw Boss If
		Applicable (Not Including Tapping/Drilling Point)

Le1 = 0.500"

Allowable Tensic	<u>on</u>	
C=	1.0	Coeff. Dependent On Screw Location (†Sect. J.5.4.2)
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)
Rn_t1 =	937.5 lb	Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)
Rn_t2 =	937.5 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)
Rn_t3 =	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)
Pnt =	896.0 lb	Allowable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Ω =	3.0	Safety Factor For Anchor
	Allowabl	e Tension = 313 lb
Allowable Shear:		D : 0 44 4/10 : 1554\
Rn_v1 =		Bearing On Member 1 (†Sect. J.5.5.1)
Rn_v2 =		Bearing On Member 2 (†Sect. J.5.5.1)
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Ω =	3.0	Safety Factor For Anchor
	Allowak	ole Shear = 517 lb
Alternate Option	<u>1S:</u>	
	Diamana dala d	in this call and the constitution from Manufacture 4 for such as in cash at a little
	=	imiting allowable capacities from Member 1 (member in contact with
	screw head)	insiting allowable conscition from Manchen 2 /manchen in NOT in contact
	_	imiting allowable capacities from Member 2 (member in NOT in contact
	with screw hea	ια)
Concentrated Sh	near & Tensile R	eactions (Select this connection type)
Qty	6	Anchor Qty at Connection
Treq	0 lb	Required Tensile Loading on Connection
Vreq	2175 lb	Required Shear Loading on Connection
n '	1.00	Exponent factor
Тсар	1875 lb	Tensile capacity of connection (Qty * Rz)
Vcap	3104 lb	Shear capacity of connection (Qty * Rx)
veap	310+10	Shear supusity of confidence (Qty 100)
R_{Z}	R_{X}	0.70
${T_{CAP}}$ +	$-\frac{R_X}{V_{CAP}} =$	0.70
CAP	CAP	

OK, (6) anchors sufficient

Project: 21-45903 - Baker, Brian

Member/Detail: BEAM TO CLIP CONNECTION

Steel Spaced Thread Tapping Screw to Aluminum Connections

†2020 Aluminum Design Manual, *AMMA TIR-A9-2014

<u>Anchor:</u>	1/4-14 SMS, 31	6 SS, Steel Screw		
Size: 1/4-14 SMS		Nominal Anchor Size Designation		
Alloy:	316 SS	Screw Material		
Ftu=	100 ksi	Anchor Ultimate Tensile Strength		
Fy =	65 ksi	Anchor Yield Strength		
D =	0.250"	Nominal Screw Diameter (*Table 20.1,20.2)		
Dmin = 0.185"		Basic Minor Diameter (*Table 20.1,20.2)		
$As = 0.027 \text{ in}^2$		Tensile Stress Area (*Table 20.1,20.2)		
$Ar = 0.027 \text{ in}^2$		Thread Root Area (*Table 20.1,20.2)		
n =	14	Thread Per Inch		
Dw=	0.625"	Washer Diameter		
Dws =	0.500"	Anchor Head Diameter		
Dh =	0.250"	Nominal Hole Diameter		
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?		
Countersunk?	No	Yes or No?		
CS Depth =		Countersink depth		
de =	0.500"	Aluminum Edge Distance		

Member in Contact with Screw Head:

Alloy 1:	6063-T6	
t1 =	0.125"	Thickness of Member 1
Ftu1 =	30 ksi	Tensile Ultimate Strength of Member 1
Fty1 =	25 ksi	Tensile Yield Strength of Member 1

Member not in Contact with Screw Head:

Alloy 2:	6063-T6	
t2 =	0.125"	Thickness of Member 2
Le =	0.125"	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2
Fty2 =	25 ksi	Tensile Yield Strength of Member 2
t3 =	0.125"	Screw Boss Wall Thickness
		Minimum Depth of Full Thread Engagement Into Screw Boss If
		Applicable (Not Including Tapping/Drilling Point)

Le1 = 0.500"

ΛI	10.40	ماطم	т.,	nsion
ΑI	IOW	abie	rei	ารเอก

C=	1.0	Coeff. Dependent On Screw Location (†Sect. J.5.4.2)
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)
Rn_t1 =	937.5 lb	Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)
Rn_t2 =	937.5 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)
Rn_t3 =	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)
Pnt =	896.0 lb	Allowable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Ω = _	3.0	Safety Factor For Anchor
İF		

Allowable Tension = 313 lb

Allowable Shear:

	411	1 Cl 547 II
Ω=	3.0	Safety Factor For Anchor
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)
Rn_v2 =	1875.0 lb	Bearing On Member 2 (†Sect. J.5.5.1)
Rn_v1 =	1875.0 lb	Bearing On Member 1 (†Sect. J.5.5.1)

Allowable Shear = 517 lb

Alternate Options:

Disregard the limiting allowable capacities from Member 1 (member in contact with	ì
screw head)	

Disregard the limiting allowable capacities from Member 2 (member in NOT in contact with screw head)

✓ (Select this connection type)

Concentrated Shear & Tensile Reactions

Qty	8	Anchor Qty at Connection
Treq	119 lb	Required Tensile Loading on Connection

Vreq 2731 lb Required Shear Loading on Connection

n 1.00 Exponent factor

Tcap2500 lbTensile capacity of connection (Qty * Rz)Vcap4138 lbShear capacity of connection (Qty * Rx)

$$\frac{R_Z}{T_{CAP}} + \frac{R_X}{V_{CAP}} = 0.71$$

OK, (8) anchors sufficient

Project: 21-45903 - Baker, Brian

Member/Detail: CLIP TO POST CONNECTION

Steel Spaced Thread Tapping Screw to Aluminum Connections

†2020 Aluminum Design Manual, *AMMA TIR-A9-2014

Anchor:	1/4-14 SMS, 31	6 SS, Steel Screw
Size:	1/4-14 SMS	Nominal Anchor Size Designation
Alloy:	316 SS	Screw Material
Ftu=	100 ksi	Anchor Ultimate Tensile Strength
Fy =	65 ksi	Anchor Yield Strength
D =	0.250"	Nominal Screw Diameter (*Table 20.1,20.2)
Dmin =	0.185"	Basic Minor Diameter (*Table 20.1,20.2)
As =	0.027 in ²	Tensile Stress Area (*Table 20.1,20.2)
Ar =	0.027 in ²	Thread Root Area (*Table 20.1,20.2)
n =	14	Thread Per Inch
Dw=	0.625"	Washer Diameter
Dws =	0.500"	Anchor Head Diameter
Dh =	0.250"	Nominal Hole Diameter
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?
Countersunk?	No	Yes or No?
CS Depth =		Countersink depth
de =	0.500"	Aluminum Edge Distance

Member in Contact with Screw Head:

Alloy 1:	6063-T6	
t1 =	0.188"	Thickness of Member 1
Ftu1 =	30 ksi	Tensile Ultimate Strength of Member 1
Fty1 =	25 ksi	Tensile Yield Strength of Member 1

Member not in Contact with Screw Head:

Alloy 2:	6063-T6	
t2 =	0.125"	Thickness of Member 2
Le =	0.125"	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2
Fty2 =	25 ksi	Tensile Yield Strength of Member 2
t3 =	0.125"	Screw Boss Wall Thickness
		Minimum Depth of Full Thread Engagement Into Screw Boss If
		Applicable (Not Including Tapping/Drilling Point)

Le1 = 0.500"

Allowable Tensie	m			
Allowable Tensio C=		Cooff Danandant On Scraw Location (†Sact. 15.4.2)		
Ks= 1.0		Coeff. Dependent On Screw Location (†Sect. J.5.4.2)		
		Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)		
Rn_t1 = Rn_t2 =		Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)		
_	1410.0 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)		
Rn_t3 =	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)		
Pnt =	896.0 lb	Allowable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)		
Ω =	3.0	Safety Factor For Connections; Building Type Structures		
Ω =	3.0	Safety Factor For Anchor e Tension = 313 lb		
	Allowabi	e Tension = 313 lb		
Allowable Shear:				
Rn_v1 =	2820.0 lb	Bearing On Member 1 (†Sect. J.5.5.1)		
Rn_v2 =	1875.0 lb	Bearing On Member 2 (†Sect. J.5.5.1)		
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)		
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall		
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)		
Ω =	3.0	Safety Factor For Connections; Building Type Structures		
Ω =	3.0	Safety Factor For Anchor		
	Allowab	le Shear = 517 lb		
Alternate Option	_	miting allowable capacities from Member 1 (member in contact with		
	screw head)	mitting allowable capacities from Wember 1 (member in contact with		
	•	miting allowable capacities from Member 2 (member in NOT in contact		
	with screw hea			
	with sciew nea	u)		
Concentrated Sh				
Qty	6	Anchor Qty at Connection		
Treq	0 lb	Required Tensile Loading on Connection		
Vreq	2731 lb	Required Shear Loading on Connection		
n	1.00	Exponent factor		
Тсар	1875 lb	Tensile capacity of connection (Qty * Rz)		
Vcap	3104 lb	Shear capacity of connection (Qty * Rx)		
$rac{R_{Z}}{T_{\it CAP}} +$	$\frac{R_X}{V_{CAP}} =$	0.88		
		OK, (6) anchors sufficient		

Work Prepared For: Mercer Island

Project: 21-45903 - Baker, Brian
Detail/Member: Base Plate Design

ALUMINUM DESIGN MANUAL (2020 EDITION) Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of 14"x0.375" 6063-T6 Aluminum Flat Plate

Per 2020 Aluminum Des	sian Manual	IIII Flat Flate				
Per 2020 Aluminum Des	sigir iviariuai			Critically		
Allo	y: 6063	Temper:	Т6	Welded:	N	
MEMBER PROPERTIE	s					
. L 1 1				Plate Height	b =	14.000"
tb 🕂 🕂				e Thickness	<i>tb</i> =	0.375"
	IV	Ioment of inertia abo			/x =	85.75 in^4
		Moment of inertia a		ut the x-axis	/y =	0.06 in^4
	Padius of av	ration about centroic			Sx =	12.25 in^3
x		gyration about centrol			rx = ry =	4.04 in 0.11 in
X ————————————————————————————————————	-X Madida of §	gyration about centre		ion constant	/y = J =	0.25 in^4
		Cross se		a of member	A =	5.25 in^2
		0,000 0		ion modulus	Z =	18.38 in^3
				ing constant		0.00 in^6
MEMBER SPANS						
		upported member ler			<i>L</i> =	0.46 ft
	Unbraced length for b	ending (between bra		• .	Lb =	0.46 ft
			Effective I	length factor	k =	1.0
MATERIAL PROPERTI	ES	_	T 11 141	-1		00.1
				ate strength	Ftu =	30 ksi
		Cou		ield strength ield strength	Fty =	25 ksi 25 ksi
		Coi		ate strength	Fcy = Fsu =	25 ksi 18 ksi
				ield strength	Fsy =	15 ksi
		Compress		of elasticity	F =	10,100 ksi
BUCKLING CONSTAN	тѕ					
	Compre	ssion in columns & b	oeam flange	s (Intercept)	Bc =	27.64 ksi
	Com	pression in columns	& beam flar	nges (S l ope)	Dc =	0.14 ksi
	Compressi	on in co <mark>l</mark> umns & bea	ım flanges (l	Intersection)	Cc =	78.38 ksi
		Compression			<i>Bp</i> =	31.39 ksi
				ates (S l ope)	Dp =	0.17 ksi
		Compression in			<i>Cp</i> =	73 . 55 ksi
	Compressive bendir				Bbr =	46.12 ksi
		nding stress in solid i			Dbr =	0.38 ksi
	Compressive bending s			,	Cbr =	80.56 ksi
		Shear stress			<i>B</i> s =	18.98 ksi
				ates (Slope)	Ds =	0.08 ksi
1.1141	ronath coefficient of first	Shear stress in			Cs =	94.57 ksi
	rength coefficient of flat				k1c =	0.35
Olumate strength	coefficient of flat plates i				k2c =	2.27
		f flat plates in bendir			k1b =	0.50
OI	timate strength of flat pla	ates in bending (stre		n coefficient	k2b = kt =	2.04 1.0
D 2 Avial Taration			, 55.0		,	
<u>D.2 Axial Tension</u> Tensile Yielding - Unwel	ded Members			[Fty]	Fty_n =	25.00 ksi
	-			F 91	Ω =	1.65
					$Fty_n/\Omega =$	15.15 ksi
Tensile Rupture - Unwel	lded Members			[Ftu/kt]	Ftu_n =	30.00 ksi
					Ω =	1.95
					Ftu_n/ Ω =	15.38 ksi
					_	

AXIAL COMPRESSION MEMBERS				
2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	λ1 =	18.23	
	Upper slenderness limit Slenderness	λ2 =	78.38	- 10
	(Bc-Dc*λ)(0.85+0.15*((Cc-λ)/(Cc-λ1))	λ(max) = Fc_n =	50.81 18.64 ksi	< λ2
	[(66-66))(0.83+0.13 ((66-1))(66-11))]	Ω =	1.65	
		Fc_n/Ω =	11.30 ksi	
LEXURAL MEMBERS				
2 Yielding and Rupture				
Nominal flexural strength for yielding and				
	[Z*Fcy]	Mnp =	459.38 k-in	
	[Mnp/Z]	Fb =	25.00 ksi	
		Ω =	1.65	
	Limit Otata of Don't	$Fb_n/\Omega =$	15.15 ksi	
	Limit State of Rupture	N A	EE4 05 le lee	
	[Z*Ftu/kt]	Mnu =	551.25 k-in	
	[Mnu/Z]	Fb = Ω =	30.00 ksi 1.95	
		Ω = Fb_n/Ω =	1.95 15.38 ksi	
		LD_IN77 -	13.30 KSI	
4 Lateral-Torsional Buckling				
Rectangular bars subject to lateral-torsion	al buckling			
Slender	ness for shapes symmetric about the bending axis	λ F.4.2.1 =	99.81	
	Slenderness for rectangular bars	λ F.4.2.4 =	53.82	
	Slenderness for any shape	λ F.4.2.5 =	99.81	
	Maximum slenderness	λ(max) =	99.81	≥ Cc
Nominal flexural strength - lateral-torsiona				
	[π²*E*Sx/λ²]	Mnmb =	122.58 k-in	
	[Mnmb/Sx]	Fb_n =	10.01 ksi	
		Ω =	1.65	
2001 2 (1 2 4 5 1		$Fb_n/\Omega =$	6.06 ksi	
G.2 Shear Supported on Both Edges Members with flat elements supported on	hath adaga			
viernibers with flat elements supported on	both edges Lower slenderness limit	14 -	20.72	
	Upper slenderness limit	λ1 =	38.73	
	Slenderness	λ2 = b/tb =	75.65 37.33	≤ λ1
			37.33 15.00 ksi	> \ 1
	[Fsy]	Fv_n = Ω =	15.00 KSI 1.65	
		Ω = Fv_n/Ω =	9.09 ksi	
ALLOWABLE STRESSES		. 4_11,77 -	9.09 KSI	
	Allowable bending stress	Fb=	6.06 ksi	
	Allowable axial stress, compression	Fac =	11.30 ksi	
	Allowable shear stress	Fv =	9.09 ksi	
	Cleatia buelding street		40.001	
	Elastic buckling stress e allowable compressive stress (per Section E.3.1)	Fe = Fao =	19.80 ksi 11.30 ksi	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				

MEMBER LOADING					
Bending Moments					
	Bending moment developed	l in member	Mz =	0.8 kip-ft	
	Bending stress developed	l in member	fb =	0.78 ksi	
	Allowable bending stress	of member	Fb =	6.06 ksi	< 1.0
Axial Loads					
	Axial load developed	l in member	Fx =	2,731 l b	
	Axial stress developed	l in member	fa =	0.52 ksi	
	Allowable compressive axial stress	of member	Fac =	11.30 ksi	< 1.0
Shear Loads					
	Shear load developed	I in member	Vz =	2,731 l b	
	Shear stress developed	I in member	fv =	0.52 ksi	
	Allowable shear stress	of member	Fv =	9.09 ksi	< 1.0
Interaction Equations					
		√ [(fb/Fb)^2	+ (fv/Fv)^2] =	0.14	< 1.0
	Eq H.1-1	î` / fa	a/Fa + fb/Fb =	0.17	< 1.0
	Eg H.3-2	fa/Fa + (fb/Fb)^2	! + (fv/Fv)^2 =	0.07	< 1.0

Project: 21-45903 - Baker, Brian

CHECK SOIL BEARING PRESSURE FOR CRITICAL FOOTING

Footing Dimensions: Wx = 48 in Wy = 48 in D = 24 in Sx = 0 in Sy = 0 in Thk = 0 in

Sx = 0 in Sy = 0 in Thk = 0 1980 lb Max Axial Gravity Load in Column

+ 4800 lb Weight of Footing (48" x 48" x 24" pad footer)

Total Load on Soil (gravity load + footing weight)

76.4 kip-in Total Moment - X-Axis in Footing (column is assumed to be centered in footer)

76.4 kip-in Total Moment - Y-Axis in Footing (column is assumed to be centered in footer)

2000 psf Min Soil Bearing Pressure (to be verified by General Contractor)

 $q_{heel} = \frac{P_{total}}{B \cdot L} - \frac{6M_x}{B^2 \cdot L} - \frac{6M_y}{L^2 \cdot B} =$ -770.1 psf footing pressure at heel (along dimension "W1")

 $q_{toe} = \frac{P_{total}}{R \cdot L} + \frac{6M_x}{R^2 \cdot L} + \frac{6M_y}{L^2 \cdot R} = 1617.6 \text{ psf}$ footing pressure at toe (along dimension "W1")

Max bearing pressure on soil = 1617.6 psf (at critical footing)

Frictional Resistance qf = 333.3 psf

Max Bearing Capacity of Footing = 2666.7 psf Square or Rectangle

Max Bearing Capacity of Footing = 2666.7 psf Circle

OK SQUARE OR RECTANGLE, soil allowable bearing pressure (2000 psf) not exceeded at critical footing

OK CIRCLE, soil allowable bearing pressure (2000 psf) not exceeded at critical footing

UPIFT RESISTANCE CALCULATION FOR CRITICAL FOOTING

Footing Dimensions: W1 = 48 in W2 = 48 in D = 24 in Slab Trib Dimensions: S1 = 0 in S2 = 0 in Thk = 0 in

 ρ_c 150 pcf Concrete Density

P 118.7 lb Uplift load at column

Conc Footing Weight = 4800 lb
Conc Slab Weight = 0 lb
Total Gravity Weight = 4800 lb

Total Uplift Load = (P + M/d) = 119 lb

OK, factor of safety FOS = 40.43 >1.0

REQUIRED REINFORCEMENT

(10) #3 Horizontal Bars Top & Bottom Each Way

(6) #4 Horizontal Bars Top & Bottom Each Way

(4) #5 Horizontal Bars Top & Bottom Each Way

(11) #4 Ties

(12) #3 Ties

OR

(11) #4 Ties

(4) #5 Horizontal bars Top & Bottom Each Way

(3) #6 Horizontal Bars Top & Bottom Each Way

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: 21-45903 Baker, Brian Date: 10/14/2021

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 + HAS-R 304/316 SS 5/8

Item number: not available (element) / 2022793 HIT-HY 200-R

(adhesive)

Effective embedment depth: $h_{ef,act} = 12.500 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F 593
Evaluation Service Report: ESR-3187

Issued I Valid: 5/1/2021 | 3/1/2022

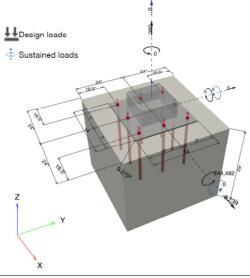
Proof: Design Method ACI 318-19 / Chem Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.375 in.

Anchor plate R: $I_x \times I_y \times t = 14.000 \text{ in. } \times 14.000 \text{ in. } \times 0.375 \text{ in.;}$ (Recommended plate thickness: not calculated)

Profile: Square HSS (AISC), HSS8X8X.1875; (L x W x T) = 8.000 in. x 8.000 in. x 0.188 in. Base material: cracked concrete, 3000, $f_c' = 3,000$ psi; h = 24.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: present, shear: present; no supplemental splitting reinforcement present


edge reinforcement: > No. 4 bar Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

 $^{\mbox{\scriptsize R}}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Seismic loads (cat. C, D, E, or F)

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

 Company:
 Page:
 2

 Address:
 Specifier:

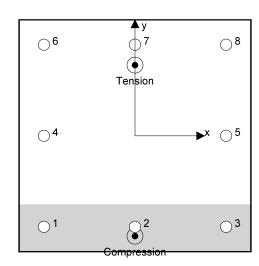
 Phone I Fax:
 |
 E-Mail:

 Design:
 21-45903 Baker, Brian
 Date:
 10/14/2021

Fastening point:

1.1 Design results

	Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]	
_	1	Combination 1	$N = 380; V_x = 8,739; V_y = 0;$	yes	100	
			$M_{.} = 244.492$; $M_{.} = 0$; $M_{.} = 0$;			


2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	1,092	1,092	0
2	0	1,092	1,092	0
3	0	1,092	1,092	0
4	2,671	1,092	1,092	0
5	2,671	1,092	1,092	0
6	6,182	1,092	1,092	0
7	6,182	1,092	1,092	0
8	6,182	1,092	1,092	0

max. concrete compressive strain: 0.27 [%] max. concrete compressive stress: 1,193 [psi] resulting tension force in (x/y)=(0.000/4.270): 23,888 [lb] resulting compression force in (x/y)=(-0.000/-6.062): 23,508 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity [♠] N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	6,182	14,690	43	ОК
Bond Strength**	23,888	26,924	89	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	23,888	32,121	75	ОК

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: E-Mail:

Design: 21–45903 Baker, Brian Date: 10/14/2021

Fastening point:

3.1 Steel Strength

 $\begin{array}{ll} {\rm N_{sa}} & = {\rm ESR~value} & {\rm refer~to~ICC\text{-}ES~ESR\text{-}}3187 \\ \varphi \ {\rm N_{sa}} \geq {\rm N_{ua}} & {\rm ACI~318\text{-}}19~{\rm Table~17.5.2} \end{array}$

Variables

A_{se,N} [in.²] f_{uta} [psi]
0.23 100,000

Calculations

N_{sa} [lb] 22,600

Results

 N_{sa} [lb] V_{sa} V_{sa} V_{sa} [lb] V_{ua} [l

3

www.hilti.com

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 21-45903 Baker, Brian
 Date:
 10/14/2021

Fastening point:

3.2 Bond Strength

$\mathbf{N}_{ag} = \left(\frac{\mathbf{A}_{Na}}{\mathbf{A}_{Na0}}\right) \Psi_{\text{ec1,Na}} \Psi_{\text{ec2,Na}} \Psi_{\text{ed,Na}} \Psi_{\text{cp,Na}} \mathbf{N}_{\text{ba}}$	ACI 318-19 Eq. (17.6.5.1b)
$\phi N_{ag} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Na} see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	

$$A_{Na0} = (2 c_{Na})^2$$
 ACI 318-19 Eq. (17.6.5.1.2a)
 $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

$$\psi_{\text{ec,Na}} = \left(\frac{1}{1 + \frac{c_{\text{N}}}{c_{\text{Na}}}}\right) \le 1.0$$
 ACI 318-19 Eq. (17.6.5.3.1)

$$\begin{array}{ll} c_{\text{Na}} \\ \psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \leq 1.0 \\ \\ \psi_{\text{cp,Na}} = \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{c_{\text{Na}}}{c_{\text{ac}}} \right) \leq 1.0 \\ \\ N_{\text{ba}} = \lambda_{\text{a}} \cdot \tau_{\text{k,c}} \cdot \alpha_{\text{N,seis}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}} \end{array} \qquad \begin{array}{ll} \text{ACI 318-19 Eq. (17.6.5.2.1b)} \\ \text{ACI 318-19 Eq. (17.6.5.2.1)} \\ \end{array}$$

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ m overhead}$	τ _{k,c} [psi]
2,261	0.625	12.500	18.500	1.000	1,192
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λ _a	$lpha_{N,seis}$	_
0.000	0.970	28.666	1.000	0.990	
Calculations					
c _{Na} [in.]	A _{Na} [in. ²]	A_{Na0} [in. ²]	Ψ ed,Na		
8.920	673.10	318.25	1.000		

C _{Na} [III.]	~ _{Na} [····]	^Na0 [····]	₹ ed,Na	
8.920	673.10	318.25	1.000	
Ψ ec1,Na	$\Psi_{\sf ec2,Na}$	$\psi_{\sf cp,Na}$	N _{ba} [lb]	
1.000	0.902	1.000	28,952	

Results

N _{ag} [I b]	ϕ bond	$\phi_{\sf seismic}$	φ _{nonductile}	φ N _{ag} [lb]	N _{ua} [l b]
55,228	0.650	0.750	1.000	26,924	23,888

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail: 21-45903 Baker, Brian Design: Date:

Fastening point:

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b$	ACI 318-19 Eq. (17.6.2.1b)
$\phi \ N_{cbg} \geq N_{ua}$	ACI 318-19 Table 17.5.2

see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)

$$A_{Nc0} = 9 h_{ef}^{2}$$
 ACI 318-19 Eq. (17.6.2.1.4)
$$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$$
 ACI 318-19 Eq. (17.6.2.3.1)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX}\left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_{\text{b}} &= k_{\text{c}} \ \lambda_{\text{a}} \ \sqrt{\dot{f_{\text{c}}}} \ h_{\text{ef}}^{1.5} \end{split} \right) \leq 1.0 \\ &\text{ACI 318-19 Eq. (17.6.2.6.1b)} \\ &\text{ACI 318-19 Eq. (17.6.2.2.1)} \end{split}$$

$$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.31 e_f}{c_{ac}} \right) \le 1.0$$
 ACI 318-19 Eq. (17.6.2.6.1b)
 $N_b = k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$ ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{ c,N}}$
12.333	0.000	0.970	18.500	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
28.666	17	1.000	3,000	

Calculations

$A_{\rm Nc}$ [in. ²]	A _{Nc0} [in. ²]	ψ ec1,N	$\psi_{\text{ec2,N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
2,040.00	1,369.00	1.000	0.950	1.000	1.000	40,330

Results

N _{cbg} [lb]	ϕ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ N _{cbg} [lb]	N _{ua} [l b]
57,104	0.750	0.750	1.000	32,121	23,888

10/14/2021

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: E-Mail:

Design: 21-45903 Baker, Brian Date: 10/14/2021

Fastening point:

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	1,092	5,695	20	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	8,739	95,025	10	ОК
Concrete edge failure in direction x+**	8,739	24,644	36	OK

^{*} highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

 $V_{\rm sa,eq} = {\sf ESR} \ {\sf value} \qquad {\sf refer \ to \ ICC-ES \ ESR-3187} \ \phi \ V_{\rm steel} \ge V_{\rm ua} \qquad {\sf ACI \ 318-19 \ Table \ 17.5.2}$

Variables

$A_{se,V}$ [in. ²]	f _{uta} [psi]	$lpha_{ m V,seis}$	
0.23	100 000	0.700	

Calculations

Results

$V_{sa,eq}$ [lb]	ϕ steel	$\phi_{nonductile}$	φ V _{sa,eq} [lb]	V _{ua} [lb]	
9,492	0.600	1.000	5,695	1,092	

6

www.hilti.com

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	21-45903 Baker, Brian	Date:	10/14/2021
Fastening point:			

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi \ V_{cpg} \ge V_{ua}$ A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	ACI 318-19 Table 17.5.2
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$ \psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) \le 1.0 $	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{array}{ll} \psi_{cp,N} &= \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5 h_{ef}}{c_{ac}} \right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{array}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_b = k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	12.333	0.000	0.000	18.500
$\psi_{\text{ c,N}}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	28.666	17	1.000	3,000

1.000

Calculations

135,750

0.700

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	$\Psi_{\text{ec2,N}}$	$\Psi_{\text{ed},\text{N}}$	$\Psi_{cp,N}$	N _b [lb]
2,304.00	1,369.00	1.000	1.000	1.000	1.000	40,330
Results						
V _{cpg} [lb]	ф _{concrete}	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cpg} [lb]	V _{ua} [lb]	_

1.000

95,025

8,739

www.hilti.com

Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	21-45903 Baker, Brian	Date:	10/14/2021
Fastening point:			

4.3 Concrete edge failure in direction x+

$V_{\rm cbg}$	$= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \Psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
φV _c	$_{ ext{lbg}} \geq V_{ua}$	ACI 318-19 Table 17.5.2
A_{Vc}	see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
	$= 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
Ψ ec,\	$_{V} = \left(\frac{1}{1 + \frac{e_{v}}{1.5c_{a1}}}\right) \le 1.0$	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed,N}}$	$\sqrt{=0.7+0.3}\left(\frac{c_{a2}}{1.5c_{a1}}\right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{\text{ h,V}}$	$=\sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
V_{b}	$= \left(7 \left(\frac{l_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
16.000	18.500	0.000	1.200	24.000
	^		ي ياد	
l _e [in.]	Λa	d _a [in.]	f _c [psi]	Ψ parallel,V
5.000	1.000	0.625	3,000	1.000

 $\Psi_{\text{ ec,V}}$

1.000

Calculations

 A_{Vc} [in.²]

32,858

1,152.00	1,152.00	1.000	0.931	1.000	29,403	
Results						
V _{cbg} [l b]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductille}$	φ V _{cbg} [lb]	V _{ua} [l b]	

 $\psi_{\text{ed},\text{V}}$

1.000

 $\psi_{\text{h,V}}$

24,644

V_b [lb]

8,739

5 Combined tension and shear loads, per ACI 318-19 section 17.8

 A_{Vc0} [in.²]

0.750

β_{N}	$\beta_{\sf V}$	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.887	0.355	5/3	100	OK	

$$\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$$

www.	hilti	ıcam

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	21-45903 Baker, Brian	Date:	10/14/202
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: 21-45903 Baker, Brian Date: 10/14/2021 Fastening point:

7 Installation data

Profile: Square HSS (AISC), HSS8X8X.1875; (L x W x T) = 8.000 in. x 8.000

in x 0.188 in.

Hole diameter in the fixture: $d_f = 0.687$ in.

Plate thickness (input): 0.375 in.

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

5/8 Hilti HAS Stainless steel threaded rod with Hilti HIT-HY 200 Safe Set System

Anchor type and diameter: HIT-HY 200 + HAS-R 304/316 SS 5/8

10

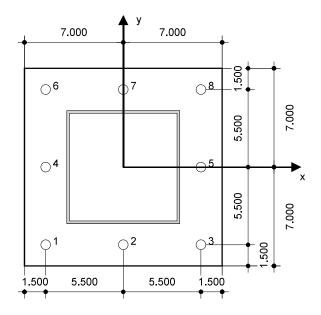
Item number: not available (element) / 2022793 HIT-HY

200-R (adhesive)

Maximum installation torque: 720 in.lb

Hole diameter in the base material: 0.750 in.

Hole depth in the base material: 12.500 in.


Minimum thickness of the base material: 14,000 in.

7.1 Recommended accessories

Drilling Cleaning Setting

- Suitable Rotary Hammer
- · Properly sized drill bit

- Compressed air with required accessories to blow from the bottom of the hole
- · Proper diameter wire brush
- · Dispenser including cassette and mixer
- · Torque wrench

Coordinates Anchor [in.]

Anchor	x	у	C-x	C+X	С _{-у}	C _{+y}	Anchor	x	у	C _{-x}	C+X	C _{-y}	C _{+y}
1	-5.500	-5.500	18.500	29.500	18.500	29.500	5	5.500	0.000	29.500	18.500	24.000	24.000
2	0.000	-5.500	24.000	24.000	18.500	29.500	6	-5.500	5.500	18.500	29.500	29.500	18.500
3	5.500	-5.500	29.500	18.500	18.500	29.500	7	0.000	5.500	24.000	24.000	29.500	18.500
4	-5.500	0.000	18.500	29.500	24.000	24.000	8	5.500	5.500	29.500	18.500	29.500	18.500

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

 Company:
 Page:
 11

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 21-45903 Baker, Brian
 Date:
 10/14/2021

 Fastening point:
 10/14/2021
 10/14/2021

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: 21-45903 Baker, Brian - 30" x 30" x 30" Footer Date: 10/14/2021

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 + HAS-R 304/316 SS 5/8

Item number: 408988 HAS-R 316 SS 5/8"x12" (element) / 2022793

HIT-HY 200-R (adhesive)

Effective embedment depth: $h_{ef,act} = 8.500 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F 593
Evaluation Service Report: ESR-3187

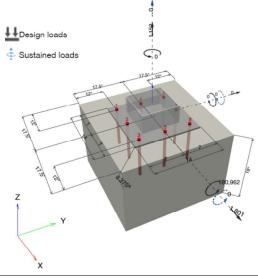
Issued I Valid: 5/1/2021 | 3/1/2022

Proof: Design Method ACI 318-19 / Chem Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.375 in.

Anchor plate R: $I_x \times I_y \times t = 14.000 \text{ in. } \times 14.000 \text{ in. } \times 0.375 \text{ in.;}$ (Recommended plate thickness: not calculated)

Profile: Square HSS (AISC), HSS8X8X.1875; (L x W x T) = 8.000 in. x 8.000 in. x 0.188 in. Base material: cracked concrete, 3000, $f_c' = 3,000$ psi; h = 18.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry


Reinforcement: tension: present, shear: present; no supplemental splitting reinforcement present

edge reinforcement: > No. 4 bar Tension load: yes (17.10.5.3 (d))

Seismic loads (cat. C, D, E, or F) Tension load: yes (17.10.5.3 (d

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

 $^{^{\}mbox{\scriptsize R}}$ - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: 21-45903 Baker, Brian - 30" x 30" x 30" Footer Date: 10/14/2021 Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
 1	Combination 1	$N = 1,152; V_x = 1,801; V_y = 0;$	yes	100
		$M_x = 180,962; M_v = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	225	225	0
2	0	225	225	0
3	0	225	225	0
4	2,044	225	225	0
5	2,044	225	225	0
6	4,695	225	225	0
7	4,695	225	225	0
8	4,695	225	225	0

2

max. concrete compressive strain: 0.20 [%] max. concrete compressive stress: 882 [psi] resulting tension force in (x/y)=(0.000/4.262): 18,173 [lb] resulting compression force in (x/y)=(0.000/-6.081): 17,021 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity 🎙 N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	4,695	14,690	32	ок
Bond Strength**	18,173	18,322	100	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	18,173	19,666	93	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page: Address: Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 21-45903 Baker, Brian - 30" x 30" x 30" Footer
 Date:
 10/14/2021

Fastening point:

3.1 Steel Strength

 $\begin{array}{ll} {\rm N_{sa}} & = {\rm ESR~value} & {\rm refer~to~ICC\text{-}ES~ESR\text{-}}3187 \\ \varphi \ {\rm N_{sa}} \geq {\rm N_{ua}} & {\rm ACI~318\text{-}}19~{\rm Table~17.5.2} \end{array}$

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.23 100,000

Calculations

N_{sa} [lb] 22,600

Results

 N_{sa} [lb] V_{sa} [lb] V_{ua} [lb]

3

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

21-45903 Baker, Brian - 30" x 30" x 30" Footer Design: Date: 10/14/2021

Fastening point:

3.2 Bond Strength

 $\phi \ N_{ag} \ \geq N_{ua}$ ACI 318-19 Table 17.5.2 see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)

 $A_{Na0} = (2 c_{Na})^2$ ACI 318-19 Eq. (17.6.5.1.2a) $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

 $\psi_{\text{ec,Na}} = \left(\frac{1}{1 + \frac{c_N}{c_{Na}}}\right) \le 1.0$ ACI 318-19 Eq. (17.6.5.3.1)

 $\psi_{\text{ ed,Na}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{c_{\text{Na}}}\right) \leq 1.0$ ACI 318-19 Eq. (17.6.5.4.1b)

$$\begin{split} \psi_{\text{ cp,Na}} &= \text{MAX} \bigg(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \bigg) \leq 1.0 \\ N_{ba} &= \lambda_a \cdot \tau_{k,c} \cdot \alpha_{N,\text{seis}} \cdot \pi \cdot d_a \cdot h_{\text{ef}} \end{split}$$
ACI 318-19 Eq. (17.6.5.5.1b)

ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ ext{overhead}}$	$\tau_{k,c}$ [psi]
2,261	0.625	8.500	12.000	1.000	1,192
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λ _a	$lpha_{N,seis}$	_
0.000	0.962	16.932	1.000	0.990	

Calculations

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψ ed,Na
8.920	673.10	318.25	1.000
Ψ ec1,Na	$\Psi_{\text{ec2,Na}}$	$\Psi_{\sf cp,Na}$	N _{ba} [lb]
1.000	0.903	1.000	19,687

Results

N _{ag} [lb]	ϕ_{bond}	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ N _{ag} [lb]	N _{ua} [lb]
37.584	0.650	0.750	1.000	18.322	18.173

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

21-45903 Baker, Brian - 30" x 30" x 30" Footer Design: Date: 10/14/2021

Fastening point:

3.3 Concrete Breakout Failure

 $\textbf{N}_{\text{cbg}} \quad = \left(\frac{\textbf{A}_{\text{Nc}}}{\textbf{A}_{\text{Nc0}}}\right) \; \psi_{\,\text{ec,N}} \; \psi_{\text{ed,N}} \; \psi_{\text{c,N}} \; \psi_{\text{cp,N}} \; \textbf{N}_{\text{b}}$ ACI 318-19 Eq. (17.6.2.1b) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

 $\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$ ACI 318-19 Eq. (17.6.2.3.1)

 $\psi_{\text{ ed,N}} ~= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}}\right) \leq 1.0 \label{eq:psi_ed}$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{cp,N} &= \text{MAX}\bigg(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\bigg) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	
8.000	0.000	0.962	12.000	1.000	
c _{ac} [in.]	k _c	λ _a	f _c [psi]		
16.932	17	1.000	3,000		

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	$\psi_{\text{ec2,N}}$	$\psi_{\text{ed},\text{N}}$	$\Psi_{cp,N}$	N _b [lb]
1,032.50	576.00	1.000	0.926	1.000	1.000	21,069

Results

N _{cbg} [lb]	ϕ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ N _{cbg} [lb]	N _{ua} [l b]
34,963	0.750	0.750	1.000	19,666	18,173

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: 21-45903 Baker, Brian - 30" x 30" x 30" Footer Date: 10/14/2021

Fastening point:

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	225	5,695	4	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	1,801	62,732	3	OK
Concrete edge failure in direction x+**	1,801	15,040	12	OK

^{*} highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

 $V_{sa,eq} = \text{ESR value}$ refer to ICC-ES ESR-3187 $\phi \ V_{steel} \geq V_{ua}$ ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	$lpha_{ m V,seis}$	
0.23	100 000	0.700	

Calculations

Results

$V_{sa,eq}$ [lb]	ϕ steel	$\phi_{nonductile}$	φ V _{sa,eq} [lb]	V _{ua} [lb]	
9,492	0.600	1.000	5,695	225	

6

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

21-45903 Baker, Brian - 30" x 30" x 30" Footer Design: Date: 10/14/2021

Fastening point:

4.2 Pryout Strength (Concrete Breakout Strength controls)

 $V_{\text{cpg}} = k_{\text{cp}} \left[\left(\frac{A_{\text{Nc}}}{A_{\text{Ncn}}} \right) \, \psi_{\text{ec,N}} \, \psi_{\text{ed,N}} \, \psi_{\text{c,N}} \, \psi_{\text{cp,N}} \, N_{\text{b}} \, \right]$ ACI 318-19 Eq. (17.7.3.1b) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4) $\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) \le 1.0$ ACI 318-19 Eq. (17.6.2.3.1)

 $\psi_{\text{ ed,N}} ~= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}}\right) \leq 1.0 \label{eq:psi_ed}$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{cp,N} &= \text{MAX}\bigg(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\bigg) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _c	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	8.000	0.000	0.000	12.000
Ψο	., _N c _{ac} [in.]	k_c	λ _a	f _c [psi]
1.00	00 16.932	17	1.000	3.000

Calculations

A _{Nc} [in. ²]	A_{Nc0} [in. ²]	$\Psi_{\text{ ec1,N}}$	$\psi_{\text{ec2,N}}$	$\Psi_{\sf ed,N}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
1 225 00	576.00	1 000	1 000	1 000	1 000	21 069

Results

V _{cpg} [lb]	$\phi_{concrete}$	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cpg} [l b]	V _{ua} [l b]
89,616	0.700	1.000	1.000	62,732	1,801

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

21-45903 Baker, Brian - 30" x 30" x 30" Footer Design: Date: 10/14/2021

Fastening point:

4.3 Concrete edge failure in direction x+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{\text{cbg}} \ge V_{\text{ua}}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	

ACI 318-19 Eq. (17.7.2.1.3)

$$\psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \le 1.0$$
 ACI 318-19 Eq. (17.7.2.3.1)

ACI 318-19 Eq. (17.7.2.4.1b)

$$\begin{split} \psi_{\text{ed,V}} &= 0.7 + 0.3 \bigg(\frac{c_{a2}}{1.5c_{a1}} \bigg) \leq 1.0 \\ \psi_{\text{h,V}} &= \sqrt{\frac{1.5c_{a1}}{h_a}} \geq 1.0 \end{split}$$
ACI 318-19 Eq. (17.7.2.6.1)

 $= \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_c} c_{a1}^{1.5}$ ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
12.000	12.000	0.000	1.200	18.000
l _e [in.]	λ a	d _a [in.]	f _c [psi]	Ψ parallel,V
5.000	1.000	0.625	3,000	1.000

Calculations

A_{Vc} [in. ²]	A_{Vc0} [in. ²]	$\Psi_{\text{ec,V}}$	$\psi_{\text{ed,V}}$	$\psi_{\text{h,V}}$	V _b [lb]
630.00	648.00	1.000	0.900	1.000	19,098

Results

V _{cbg} [lb]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cbg} [lb]	V _{ua} [lb]
20.053	0.750	1.000	1.000	15.040	1.801

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_{N}	$\beta_{\sf V}$	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.992	0.120	1.000	93	OK	

 β_{NV} = (β_N + $\beta_V)$ / 1.2 <= 1

8

١	A	л	۸	л	A	•	h	Iŧ	r	\sim	m

 Company:
 Page:
 9

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 21-45903 Baker, Brian - 30" x 30" x 30" Footer
 Date:
 10/14/2021

 Fastening point:
 10/14/2021

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Fastening point:

Company: Address: Phone I Fax:

Design:

21-45903 Baker, Brian - 30" x 30" x 30" Footer

Page: Specifier: E-Mail: Date:

10/14/2021

10

7 Installation data

Profile: Square HSS (AISC), HSS8X8X.1875; (L x W x T) = 8.000 in. x 8.000

in x 0.188 in.

Hole diameter in the fixture: $d_f = 0.687$ in.

Plate thickness (input): 0.375 in.

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

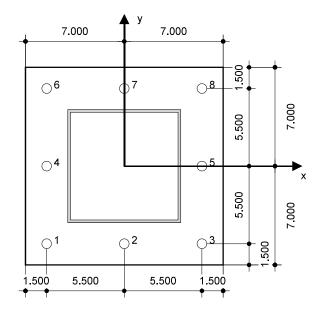
Anchor type and diameter: HIT-HY 200 + HAS-R 304/316 SS 5/8

Item number: 408988 HAS-R 316 SS 5/8"x12" (element) /

2022793 HIT-HY 200-R (adhesive) Maximum installation torque: 720 in.lb Hole diameter in the base material: 0.750 in.

Hole depth in the base material: 8.500 in.

Minimum thickness of the base material: 10,000 in.


5/8 Hilti HAS Stainless steel threaded rod with Hilti HIT-HY 200 Safe Set System

7.1 Recommended accessories

Drilling Cleaning Setting

- · Suitable Rotary Hammer
- · Properly sized drill bit

- · Compressed air with required accessories to blow from the bottom of the hole
- · Proper diameter wire brush
- · Dispenser including cassette and mixer
- · Torque wrench

Coordinates Anchor [in.]

Anchor	x	у	C-x	C+X	С _{-у}	C _{+y}	Anchor	x	у	C _{-x}	C+X	С _{-у}	C _{+y}
1	-5.500	-5.500	12.000	23.000	12.000	23.000	5	5.500	0.000	23.000	12.000	17.500	17.500
2	0.000	-5.500	17.500	17.500	12.000	23.000	6	-5.500	5.500	12.000	23.000	23.000	12.000
3	5.500	-5.500	23.000	12.000	12.000	23.000	7	0.000	5.500	17.500	17.500	23.000	12.000
4	-5.500	0.000	12.000	23.000	17.500	17.500	8	5.500	5.500	23.000	12.000	23.000	12.000

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

 Company:
 Page:
 11

 Address:
 Specifier:
 Page:
 1

 Phone I Fax:
 |
 E-Mail:

 Design:
 21-45903 Baker, Brian - 30" x 30" x 30" Footer
 Date:
 10/14/2021

 Fastening point:
 10/14/2021
 10/14/2021

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

Work Prepared For: StruXure Outdoor of Washington

Project: 21-45903 - Baker, Brian

Detail: PIVOT ROOF MOUNT CONNECTION

Loading

Design Uplift ("Uplift") = 1.98 psf
Design Gravity Load ("Grav") = 33.00 psf
Design Fascia Load ("WL") = 23.15 psf

Roof pitch: 3 / 12

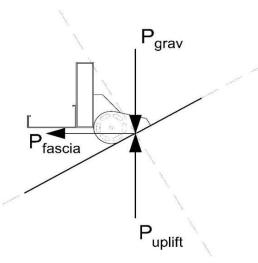
Roof angle: 14°

W = 9.33 ft Tributary Width S= 4.00 ft Roof Pivot Mount Spacing

 $P_{grav} = 1232 lb$

 $P_{uplift} = 74 lb$

P_{fascia} = 82 lb


 $V_{grav} = 379 lb$

 $V_{uplift} = 98 lb$

 $T_{uplift} = 72 lb$

 $V_u = 379 \text{ lb}$

 $T_u = 72 lb$

Client:	StruXure Outdoor of Washington	Job#: 21-45903
Project:	Baker, Brian	Date: 10/14/21
Detail/member:	Roof Mount Pivot Wood Connections	Calc. by: Chk'd by: ZRV AEM

WOOD CONNECTION DESIGN

2012 NDS - ASD

NDS

Load scenario: Single shear **FASTENER** Load duration: 1.6 0.250 in Nominal diameter Temperature: T<= 100°F 0.173 in Root diameter 0.000 in Washer thickness **Exposure service: Wet Conditions** Moisture at fabric.: <= 19% 1.094 in Screw thread length

Moisture in service: <= 19% Length of tapered tip 0.156 in

Bending yield strength, Fyb: 70,000 psi

1/4" Ø x1.5" Lag Screws

MAIN MEMBER	SIDE MEMBER	
Wood	Aluminum	Material
Visually Graded Dimension Lumber	N/A	Wood type
Douglas Fir-Larch	6063-T6	Specie/Grade/Al
No. 2	N/A	Wood grade
2"x6"	N/A	Nominal size
0.50	N/A	Specific gravity,
5.500 in	N/A	Member depth,
1.500 in	N/A	Member thickne
	2.000 in	Member/plate d
	0.125 in	Member/plate t
1,600 ksi	10,100 ksi	Modulus of Elast
90 °	0 °	Max. angle of loa
4,465 psi	31,000 psi	Actual dowel Be
5,600 psi	31,000 psi	Dowel Bearing st
4,465 psi	31,000 psi	Dowel Bearing st

Alloy G d ness, ts, tm depth thickness sticity, E oad to grain earing strength, Fe strength, Fell strength, FeT

Connection Geometry

	LATERAL	. LOADING		WITHDRAWAL		
MAIN	N MEMBER	SIDI	E MEMBER	WITHDRAWAL	ACTUAL	
FULL VALUE	MIN.	FULL VALUE	MIN.	MIN.		
2 in (8Ø)	1 in (4Ø)	-	-	-	1.375 in	
1 in (4Ø)	0.5 in (2Ø)	N/A	N/A	1 in (4Ø)	2.000 in	
-	1 in (4Ø)	-	N/A	0.38 in (1.5Ø)	1.000 in	
-	0.38 in (1.5Ø)	-	N/A	0.38 III (1.39)	1.000 in	
-	-	-	-	-	1	
-	-	-	i	-	3	
1 in (4Ø)	0.75 in (3Ø)	N/A	N/A	1 in (4Ø)	1.000 in	
-	0.8 in (2 <ls d<6)<="" td=""><td>-</td><td>N/A</td><td>-</td><td></td><td></td></ls>	-	N/A	-		
lm/D =	4.88	Is/D =	N/A			

Penetration into main member End distance, End Loaded edge distance, Edl Unloaded edge distance, Edu Number of anchors in a row Number of rows Spacing for fasteners in a row, s Spacing in between rows, Sr **Bolt slenderness**

Lateral Loa	nd Capaci	ty	
D = 0.	173	Root diameter, in	
lm = 1.	219	= Main member dowel bearing length, in	
Is = 0.	125	= Side member dowel bearing length, in	
$Fe\theta_m = 4$,	465 psi	= Dowel bearing at an angle to Grain: ((Fo	ell_m)*(FeT _m))/((Fell _m)*sin ² θ +(FeT _m)*cos ² θ)
$Fe\theta_s = 32$	1,000 psi	= Dowel bearing at an angle to Grain: ((Fo	(FeT_s) *(FeT_s))/((FeII_s)*sin² θ +(FeT_s)*cos² θ)
Re = 0.	144	= Fem/Fes	
Rt = 9.	750	= lm/ls	
$K\theta = 1.$	250	<i>=</i> 1+ θ/360	
KD = 2.	230	= 10*D+0.5	
k1 = 0.	565	= (SQRT(Re+2*Re^2*(1+Rt+Rt^2)+Rt^2*R	e^3)-Re*(1+Rt))/(1+Re)
k2 = 0.	600	= -1+SQRT(2*(1+Re)+(2*Fyb*(1+2*Re)*D	^2)/(3*Fem*Im^2))
k3 = 6.	668	= -1+SQRT(2*(1+Re)/Re+(2*Fyb*(2+Re)*[0^2)/(3*Fem*ls^2))
Yield Mode	Rd	Z (single shear)	Z (double shear)
I _m	2.79	338 lbs = $D*Im*Fem/Rd$	338 lbs = $D*Im*Fem/Rd$
I_s	2.79	240 lbs = $D*Is*Fes/Rd$	481 lbs = 2D*Is*Fes/Rd
II	2.79	136 lbs = $k1*D*ls*Fes/Rd$	
III _m	2.79	157 lbs = $k2*D*Im*Fem/((1+2*Re)*Rd)$	
III_s	2.79	108 lbs = $k3*D*ls*Fem/((2+Re)*Rd)$	215 lbs =2k3*D*ls*Fem/((2+Re)*Rd)
IV	2.79	145 lbs = $D^2/Rd^*(2*Fem*Fyb/(3*(1+Re)))$	290 lbs = 2D^2/Rd*(2*Fem*Fyb/(3*(1+Re)))^0.5

Z = 108 lbs	Minimum of yield mode values above
$C_D = 1.60$	Load duration factor
$C_{M} = 1.00$	Wet service factor for connections
$C_{t} = 1.00$	Temperature factor for connections
$C_g = 1.00$	Group action factor
$C_{\Delta} = 1.00$	Geometric factor
$C_{eg} = 1.00$	End grain factor
Z = 172 lbs ZT = 517 lbs	Factored lateral load capacity (160%): Z'= (Z)(CD)(CM)(Ct)(Cg)(CD)(Ceg)(Cd) Total capacity of connection for lateral loads

Withdrawal load capacity for wood at main member:

g Screws or screws:		
W = 225 lbs/in	Nominal design value in pounds per inch of penetration	n: 1800*(G)^(3/2)(d)^(3/4)
L = 1.219 in	Total length of lag screw into main member (shall not in	nclude length of tapered tip)
L' = 1.094 in	Total length of thread penetration into main member	(all threads into main member)
W = 246 lbs	Nominal design value per fastener	
$C_D = 1.60$	Load duration factor	
$C_{M} = 1.00$	Wet service factor for connections	
$C_t = 1.00$	Temperature factor for connections	
$C_{eg} = 1.00$	End grain factor	
C _{edge} = 1.00	Edge distance factor	
W = 394 lbs	Factored withdrawal load capacity (160%): W'= (W)(CD)(CM)(Ct)(Ceg)(Cd)
WT = 1,181 lbs	Total capacity of connection for Withdrawal loads	A A SA A
ru bolts:		
F _{cp} = N/A	Compression perpendicular to grain design value (Per N	IDS cumplemental tables)
$W_{d} = 1.000 \text{ in}$	Washer diameter	supplemental tables)
$A_{w} = 0.785 \text{ in}^{2}$	Washer bearing area	
$C_{M} = 0.97$	Wet service factor	
$C_{\rm M} = 0.57$ $C_{\rm t} = 1.00$	Temperature factor	
$C_t = 1.00$ Ci = 0.80	Incising factor	
$C_b = 1.00$	Bearing area factor	
$F'_{cp} = N/A$	Factored compression perpendicular to grain: (Fcp)(CM)	(Ct)(Ci)(Cb)
Tcap = N/A	Tension capacity per anchor	
Tcap = N/A	Wood capacity of connection for tension loads*	
olt tension capacity must be ve	erified and the lesser value shall be adopted.	